摘要:
The present invention provides a method for forming a self-aligned Ni alloy silicide contact. The method of the present invention begins by first depositing a conductive Ni alloy with Pt and optionally at least one of the following metals Pd, Rh, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W or Re over an entire semiconductor structure which includes at least one gate stack region. An oxygen diffusion barrier comprising, for example, Ti, TiN or W is deposited over the structure to prevent oxidation of the metals. An annealing step is then employed to cause formation of a NiSi, PtSi contact in regions in which the metals are in contact with silicon. The metal that is in direct contact with insulating material such as SiO2 and Si3N4 is not converted into a metal alloy silicide contact during the annealing step. A selective etching step is then performed to remove unreacted metal from the sidewalls of the spacers and trench isolation regions.
摘要:
Methods of fabricating a semiconductor structure including heterogeneous suicides or germanides located in different regions of a semiconductor structure are provided. The heterogeneous suicides or germanides are formed onto a semiconductor layer, a conductive layer or both. In accordance with the present invention, the inventive methods utilize a combination of sequential deposition of different metals and patterning to form different suicides or germanides in different regions of a semiconductor chip. The method includes providing a Si-containing or Ge layer having at least a first region and a second region; forming a first silicide or germanide on one of the first or second regions; and forming a second silicide or germanide that is compositionally different from the first silicide or germanide on the other region not including the first silicide or germanide, wherein the steps of forming the first and second suicides or germanides are performed sequentially or in a single step.
摘要:
A semiconductor structure that includes a Co-containing liner disposed between an oxygen-getter layer and a metal-containing conductive material is provided. The Co-containing liner, the oxygen-getter layer and the metal-containing conductive material form MOL metallurgy where the Co-containing liner replaces a traditional TiN liner. By “Co-containing” is meant that the liner includes elemental Co alone or elemental Co and at least one of P or B. In order to provide better step coverage of the inventive Co-containing liner within a high aspect ratio contact opening, the Co-containing liner is formed via an electroless deposition process.
摘要:
Structure and methods of determining the complete location of a buried short using voltage contrast inspection are disclosed. In one embodiment, a method includes providing a test structure having a PN junction thereunder; and using the PN junction to determine the location of the buried short using voltage contrast (VC) inspection. A test structure may include a plurality of test elements each having a PN junction thereunder, wherein a location of the buried short within the test structure can be determined using the PN junction and the VC inspection. The PN junction forces a change in illumination brightness of a test element including the buried short, thus allowing determination of the complete location of a buried short.
摘要:
The present invention is directed to a low thermal budget MOL liner to be used in the fabrication of a semiconductor device. The low thermal budget MOL liner of the present invention, which is formed by treating a titanium-deposited layer with an in-situ plasma nitridization step, results in a significantly improved high performance device as the need for the higher thermal annealing process presently used in the making of such devices can be avoided. The present invention is further directed to a method of making the resulting semiconductor device, as well as the semi-conductor device itself.