Abstract:
Methods and systems represent constraint as an Ising model penalty function and a penalty gap associated therewith, the penalty gap separating a set of feasible solutions to the constraint from a set of infeasible solutions to the constraint; and determines the Ising model penalty function subject to the bounds on the programmable parameters imposed by the hardware limitations of the second processor, where the penalty gap exceeds a predetermined threshold greater than zero. Such may be employed to find quantum binary optimization problems and associated gap values employing a variety of techniques.
Abstract:
Methods and systems represent constraint as an Ising model penalty function and a penalty gap associated therewith, the penalty gap separating a set of feasible solutions to the constraint from a set of infeasible solutions to the constraint; and determines the Ising model penalty function subject to the bounds on the programmable parameters imposed by the hardware limitations of the second processor, where the penalty gap exceeds a predetermined threshold greater than zero. Such may be employed to find quantum binary optimization problems and associated gap values employing a variety of techniques.
Abstract:
Computational systems implement problem solving using heuristic solvers or optimizers. Such may iteratively evaluate a result of processing, and modify the problem or representation thereof before repeating processing on the modified problem, until a termination condition is reached. Heuristic solvers or optimizers may execute on one or more digital processors and/or one or more quantum processors. The system may autonomously select between types of hardware devices and/or types of heuristic optimization algorithms. Such may coordinate or at least partially overlap post-processing operations with processing operations, for instance performing post-processing on an ith batch of samples while generating an (i+1)th batch of samples, e.g., so post-processing operation on the ith batch of samples does not extend in time beyond the generation of the (i+1)th batch of samples. Heuristic optimizers selection is based on pre-processing assessment of the problem, e.g., based on features extracted from the problem and for instance, on predicted success.
Abstract:
Computational systems implement problem solving using heuristic solvers or optimizers. Such may iteratively evaluate a result of processing, and modify the problem or representation thereof before repeating processing on the modified problem, until a termination condition is reached. Heuristic solvers or optimizers may execute on one or more digital processors and/or one or more quantum processors. The system may autonomously select between types of hardware devices and/or types of heuristic optimization algorithms. Such may coordinate or at least partially overlap post-processing operations with processing operations, for instance performing post-processing on an ith batch of samples while generating an (i+1)th batch of samples, e.g., so post-processing operation on the ith batch of samples does not extend in time beyond the generation of the (i+1)th batch of samples. Heuristic optimizers selection is based on pre-processing assessment of the problem, e.g., based on features extracted from the problem and for instance, on predicted success.