Abstract:
An iron-based superalloy for high temperature 700° C. with coherent precipitation of cuboidal B2 nanoparticles, belongs to the field of heat-resistant stainless steel, including Fe, Cr, Ni, Al, Mo, W, Zr, B elements. C, Si, Mn, S, P, O, N are impurity elements. The weight percent (wt. %) of its alloy composition is Cr: 10.0˜12.0, Ni: 13.0˜15.0, Al: 6.0˜7.0, Mo: 2.0˜3.0, W: 0.3˜0.7, Zr: 0.03˜0.05, B: 0.004˜0.007, C≤0.02, Si≤0.20, Mn≤0.20, S≤0.01, P≤0.02, O≤0.005, N≤0.02, Fe: balance; and the atomic percent ratio of Zr/B is 1:1, the atomic percent ratio of Cr/(Mo+W) is 8:1, and the atomic percent ratio of Mo/W is 8:1. The coherent precipitation of cuboidal B2 nanoparticles in ferritic matrix through the alloy composition design.
Abstract:
The present invention relates to a 600° C./1 GPa high-temperature ultra-high strength Ti alloy and a preparation method therefor, and belongs to an alloy system of Ti—Al—Zr—Sn—Si plus refractory metals. The 600° C./1 GPa high-temperature ultra-high strength Ti alloy comprises the following main components by mass percent: 5.2 wt. %-6.0 wt. % of Al, 6.2 wt. %-12.5 wt. % of Zr, 5.8 wt. %-6.5 wt. % of Sn, 0.3 wt. %-1.5 wt. % of Si and the balance of Ti element, refractory metals and other unavoidable impurities. Firstly, an alloy is prepared after incoming materials quality inspection. Secondly, a high-melting point master alloy and a low-melting point Al—Sn master alloy are respectively prefabricated to inhibit the uneven dissolution of elements and improve the microstructure homogeneity. Finally, the alloy blocks are subjected to vacuum arc melting to prepare an alloy. The present invention is convenient for mass production and can be used as an alternative material for high-temperature structural components of cutting-edge aviation and weapon equipment.
Abstract:
A Cu—Ni—Mo alloy thin film, including Ni as a solution element and Mo as a diffusion barrier element. Ni and Mo are co-doped with Cu. The enthalpy of mixing between Mo and Cu is +19 kJ/mol, and the enthalpy of mixing between Mo and Ni is −7 kJ/mol. The atomic fraction of Mo/Ni is within the range of 0.06-0.20 or the weight faction of Mo/Ni within the range of 0.10-0.33. The total amount of Ni and Mo additions is within the range of 0.14-1.02 at. % or wt. %. A method for manufacturing the alloy thin film is also provided.