Abstract:
An information handling system includes an motion sensor, an embedded controller, and a battery charge indicator. The motion sensor detects a battery charge request, and provides a trigger signal in response to the battery charge request being detected. The embedded controller receives the trigger signal from the motion sensor, and requests a relative state of charge of a battery in response to the trigger signal. The embedded controller then receives the relative state of charge of the battery, and provides a relative state of charge indication signal. The battery charge indicator receives the relative state of charge indication signal, and outputs an indication of the relative state of charge of the battery based on relative state of charge indication signal.
Abstract:
An information handling system (IHS) unambiguously addresses networked devices connected by a local area network (LAN) based network interface controller (NIC) by detecting a device descriptor of LAN-based NIC, determining that the device descriptor indicates a capability for assigning a reserve media access control (MAC) address to the networked device, writing the reserve MAC address in the LAN-based NIC of the networked device, and associating the reserve MAC address with the networked device in an inventory data structure for the IHS.
Abstract:
An information handling system (IHS) performs security policy enforcement using security policy data maintained in an embedded controller, which operates within a privileged environment. The security policy data identifies security policies established for the IHS. The EC is directly connected to a number of sensors from which the EC receives sensor data and to at least one integrated functional device. The EC determines whether the received sensor data fulfills any trigger condition of a security policy. If the received sensor data does not fulfill any trigger condition of a security policy described by the security policy data, the EC continues to monitor sensors for updated sensor data. However, if the received sensor data fulfills any trigger condition of the security policy, the EC performs a security measure that involves enabling, disabling, or resetting one or more of the at least one integrated functional devices that can be disabled.
Abstract:
A computer-implemented method provides power to a fingerprint reader while the remaining components of the information handling system are held in a low power, non-operating state. Placement of a finger across the fingerprint reader is detected with the information handling system in the non-operating state. A fingerprint is read and a corresponding fingerprint image is generated. The fingerprint image is buffered and an embedded controller is triggered to start an authentication device having a secure storage. The fingerprint image is compared to a fingerprint template contained in the secure storage. In response to the fingerprint image matching the fingerprint template, the authentication device signals the embedded controller to activate a user authenticated wake-up cycle to provide power to the other components of the information handling system such that the information handling system activates an operating system and enters a fully powered and user authenticated, operational state.
Abstract:
A pre-boot diagnostic display may be controlled by an embedded controller of an information handling system. The embedded controller may generate pre-boot diagnostic content during power on self-test (POST) of the information handling system. The pre-boot diagnostic content may be displayed to a user on a primary display of the information handling system during POST and before the information handling system is booted to an operating system.
Abstract:
An information handling system (IHS) performs security policy enforcement using security policy data maintained in an embedded controller, which operates within a privileged environment. The security policy data identifies security policies established for the IHS. The EC is directly connected to a number of sensors from which the EC receives sensor data and to at least one integrated functional device. The EC determines whether the received sensor data fulfills any trigger condition of a security policy. If the received sensor data does not fulfill any trigger condition of a security policy described by the security policy data, the EC continues to monitor sensors for updated sensor data. However, if the received sensor data fulfills any trigger condition of the security policy, the EC performs a security measure that involves enabling, disabling, or resetting one or more of the at least one integrated functional devices that can be disabled.
Abstract:
An information handling system includes an motion sensor, an embedded controller, and a battery charge indicator. The motion sensor detects a battery charge request, and provides a trigger signal in response to the battery charge request being detected. The embedded controller receives the trigger signal from the motion sensor, and requests a relative state of charge of a battery in response to the trigger signal. The embedded controller then receives the relative state of charge of the battery, and provides a relative state of charge indication signal. The battery charge indicator receives the relative state of charge indication signal, and outputs an indication of the relative state of charge of the battery based on relative state of charge indication signal.
Abstract:
In one or more embodiments, one or more systems, methods, and/or processes may provide low power state entry signals to multiple devices of an information handling system. After providing the low power state entry signals to the multiple devices, the one or more systems, methods, and/or processes may receive a first status signal from a first device of the multiple devices within an amount of time; may determine that the first status signal from the first device was received within the amount of time; may determine that a second status signal from a second device of the multiple devices was not received within the amount of time; may log that the first status signal from the first device was received within the amount of time; and may log that the second status signal from the second device was not received within the amount of time.
Abstract:
A computer-implemented method provides power to a fingerprint reader while the remaining components of the information handling system are held in a low power, non-operating state. Placement of a finger across the fingerprint reader is detected with the information handling system in the non-operating state. A fingerprint is read and a corresponding fingerprint image is generated. The fingerprint image is buffered and an embedded controller is triggered to start an authentication device having a secure storage. The fingerprint image is compared to a fingerprint template contained in the secure storage. In response to the fingerprint image matching the fingerprint template, the authentication device signals the embedded controller to activate a user authenticated wake-up cycle to provide power to the other components of the information handling system such that the information handling system activates an operating system and enters a fully powered and user authenticated, operational state.
Abstract:
A computer-implemented method provides power to a fingerprint reader while the remaining components of the information handling system are held in a low power, non-operating state. Placement of a finger across the fingerprint reader is detected with the information handling system in the non-operating state. A fingerprint is read and a corresponding fingerprint image is generated. The fingerprint image is buffered and an embedded controller is triggered to start an authentication device having a secure storage. The fingerprint image is compared to a fingerprint template contained in the secure storage. In response to the fingerprint image matching the fingerprint template, the authentication device signals the embedded controller to activate a user authenticated wake-up cycle to provide power to the other components of the information handling system such that the information handling system activates an operating system and enters a fully powered and user authenticated, operational state.