Abstract:
A liquid cooled power electronics assembly configured to use electrically conductive coolant to cool power electronic devices that uses dielectric plates sealed with a metal sleeve around the perimeter of the dielectric plates to form a device assembly. The configuration allows for more direct contact between the electronic device and the coolant, while protecting the electronic device from contact with potentially electrically conductive coolant. Material used to form the dielectric plates and the housing are selected to have similar coefficients of thermal expansion (CTE) so that the reliability of the seals is maximized.
Abstract:
An assembly for coupling thermally a thermoelectric generator (TEG) to an exhaust manifold of an internal combustion engine. The assembly includes a first heat exchanger configured to guide exhaust gas of an internal combustion engine past an opening defined by the first heat exchanger, and a heat sink configured to couple thermally the TEG to the exhaust gas and fluidicly seal the opening. The assembly is configured so the heat sink is directly exposed to the exhaust gas so that heat is efficiently transferred from the exhaust gas to the TEG.
Abstract:
An assembly for coupling thermally a thermoelectric generator (TEG) to an exhaust manifold of an internal combustion engine. The exhaust manifold forms a first heat exchanger configured to couple thermally heat from exhaust gas to an outer surface of the first heat exchanger. The outer surface is preferably formed of stainless steel. A first dielectric layer is formed by firing a thick-film dielectric material onto the stainless steel of the first heat exchanger. A first conductor layer is formed by firing a conductive thick-film onto the first dielectric layer. A first paste layer of silver (Ag) based sintering paste is interposed between the first conductor layer and a first contact of the TEG. The first contact is sintered to the first conductor layer when the assembly is suitably arranged and suitably heated.