Abstract:
A thermoelectric heat exchanger includes a tube, a fin, and a thermoelectric assembly. The tube is configured to contain coolant flowing therethrough and thermally couple the coolant to a surface of the tube. The fin is configured to transfer heat from the fin to air passing across the fin. The thermoelectric assembly is thermally coupled to the tube and the fin. The assembly is configured to heat the fin relative to the tube in response to a voltage source applied to the assembly. The assembly includes a plurality of thermoelectric modules. Each of the thermoelectric modules is electrically interconnected into a group of series connected modules. The number of modules in each group that are electrically connected in series is determined based on a voltage value of the voltage source and a local temperature difference between the tube and the fin proximate to the group.
Abstract:
A heating, ventilation, and air-conditioning (HVAC) system includes a blower, a fresh-air valve, a bypass duct, and a bypass valve. The blower is configured to urge air to flow from an inlet to an outlet of the blower. The fresh-air valve is operable to provide a mixture of air drawn from an outside-air duct and a recirculated-air duct to the inlet. The fresh-air valve is operable to a recirculate position where the outside-air duct is substantially blocked from communicating with the inlet. The bypass duct is configured to couple the outlet to the outside-air duct. The bypass valve is located in the bypass duct and is operable to a closed position and an open position. The cabin is ventilated when the fresh-air valve is in the recirculate position, the bypass valve is in the open position, and the blower is operated to blow air out of the outside-air duct.