Abstract:
A method of operating a bridge switch control circuit is disclosed for controlling at least one pair of complementary switches. First, a first driving signal, a second driving signal, a first latching signal, and a second latching signal are provided. The first driving signal and the second driving signal drive the complementary switches. Afterward, it is to judge whether the first driving signal triggers one of the complementary switches by a rising-edge manner. If YES, the first latching signal is controlled at a high-level status and the second latching signal is simultaneously controlled at a low-level status. Afterward, it is to judge whether the second driving signal triggers the other of the complementary switches by a rising-edge manner. If YES, the second latching signal is controlled at a high-level status and the first latching signal is simultaneously controlled at a low-level status.
Abstract:
A power supply device includes a PF correction circuit, a power switching circuit and a control circuit. The PF correction circuit converts an input voltage to a bus voltage according to a control signal to supply a later stage circuit. The power switching circuit selectively switches to conduct a first source or a second source to the PF correction circuit to provide the input voltage to the PF correction circuit. The control circuit outputs the control signal to the PF correction circuit. When the control circuit detects a first voltage of the first source connecting to the PF correction circuit is abnormal, the control circuit determines whether a second voltage of the second source is smaller than the bus voltage and controls the power switching circuit to switch when the second voltage is smaller than the bus voltage to conduct the second source to the PF correction circuit.
Abstract:
A power supply conversion system receives an external power source to supply power to a load. The power supply conversion system includes at least one main power apparatus, at least one auxiliary power apparatus, a main switch, an auxiliary switch, and a control unit. The control unit turns on the main switch to restore the external power source when the control unit detects that the external power source is normally restored, and jointly supply power to the load with the auxiliary power apparatus. Especially, the output voltage of the main power apparatus is greater than the output voltage of the auxiliary power apparatus. In addition, the control unit disconnects the auxiliary power apparatus supplying power to the load when the control unit detects that the main power apparatus completely supplies power to the load.