Abstract:
A method of controlling fault currents within a utility power grid is provided. The method may include coupling a superconducting electrical path between a first and a second node within the utility power grid and coupling a non-superconducting electrical path between the first and second nodes within the utility power grid. The superconducting electrical path and the non-superconducting electrical path may be electrically connected in parallel. The superconducting electrical path may have a lower series impedance, when operated below a critical current level, than the non-superconducting electrical path. The superconducting electrical path may have a higher series impedance, when operated at or above the critical current level, than the non-superconductor electrical path.
Abstract:
A superconducting transformer system is configured to be included within a utility power grid having a known fault current level. The superconducting transformer system includes a non-superconducting transformer interconnected between a first node and a second node of the utility power grid. A superconducting transformer is interconnected between the first node and the second node of the utility power grid. The superconducting transformer and the non-superconducting transformer are electrically connected in parallel. The superconducting transformer has a lower series impedance than the non-superconducting transformer when the superconducting transformer is operated below a critical current level and a critical temperature. The superconducting transformer is configured to have a series impedance that is at least N times the series impedance of the non-superconducting transformer when the superconducting transformer is operated at or above one or more of the critical current level and the critical temperature. N is greater than 1 and is selected to attenuate, in conjunction with an impedance of the non-superconducting transformer, the known fault current level by at least 10%.
Abstract:
A cryogenically-cooled HTS cable is configured to be included within a utility power grid having a maximum fault current that would occur in the absence of the cryogenically-cooled HTS cable. The cryogenically-cooled HTS cable includes a continuous liquid cryogen coolant path for circulating a liquid cryogen. A continuously flexible arrangement of HTS wires has an impedance characteristic that attenuates the maximum fault current by at least 10%. The continuously flexible arrangement of HTS wires is configured to allow the cryogenically-cooled HTS cable to operate, during the occurrence of a maximum fault condition, with a maximum temperature rise within the HTS wires that is low enough to prevent the formation of gas bubbles within the liquid cryogen.
Abstract:
A cryogenically-cooled HTS cable is configured to be included within a utility power grid having a maximum fault current that would occur in the absence of the cryogenically-cooled HTS cable. The cryogenically-cooled HTS cable includes a continuous liquid cryogen coolant path for circulating a liquid cryogen. A continuously flexible arrangement of HTS wires has an impedance characteristic that attenuates the maximum fault current by at least 10%. The continuously flexible arrangement of HTS wires is configured to allow the cryogenically-cooled HTS cable to operate, during the occurrence of a maximum fault condition, with a maximum temperature rise within the HTS wires that is low enough to prevent the formation of gas bubbles within the liquid cryogen.
Abstract:
A cryogenically-cooled HTS cable is configured to be included within a utility power grid having a maximum fault current that would occur in the absence of the cryogenically-cooled HTS cable. The cryogenically-cooled HTS cable includes a continuous liquid cryogen coolant path for circulating a liquid cryogen. A continuously flexible arrangement of HTS wires has an impedance characteristic that attenuates the maximum fault current by at least 10%. The continuously flexible arrangement of HTS wires is configured to allow the cryogenically-cooled HTS cable to operate, during the occurrence of a maximum fault condition, with a maximum temperature rise within the HTS wires that is low enough to prevent the formation of gas bubbles within the liquid cryogen.
Abstract:
A superconducting electrical cable system is configured to be included within a utility power grid. The superconducting electrical cable system includes a superconducting electrical path interconnected between a first and a second node within the utility power grid. A non-superconducting electrical path is interconnected between the first and second nodes within the utility power grid. The superconducting electrical path and the non-superconducting electrical path are electrically connected in parallel. The superconducting electrical path has a lower series impedance, when operated below a critical current level, than the non-superconducting electrical path. The superconducting electrical path has a higher series impedance, when operated at or above the critical current level, than the non-superconductor electrical path.
Abstract:
A cryogenically-cooled HTS cable is configured to be included within a utility power grid having a maximum fault current that would occur in the absence of the cryogenically-cooled HTS cable. The cryogenically-cooled HTS cable includes a continuous liquid cryogen coolant path for circulating a liquid cryogen. A continuously flexible arrangement of HTS wires has an impedance characteristic that attenuates the maximum fault current by at least 10%. The continuously flexible arrangement of HTS wires is configured to allow the cryogenically-cooled HTS cable to operate, during the occurrence of a maximum fault condition, with a maximum temperature rise within the HTS wires that is low enough to prevent the formation of gas bubbles within the liquid cryogen.
Abstract:
A method of controlling fault currents within a utility power grid is provided. The method may include coupling a superconducting electrical path between a first and a second node within the utility power grid and coupling a non-superconducting electrical path between the first and second nodes within the utility power grid. The superconducting electrical path and the non-superconducting electrical path may be electrically connected in parallel. The superconducting electrical path may have a lower series impedance, when operated below a critical current level, than the non-superconducting electrical path. The superconducting electrical path may have a higher series impedance, when operated at or above the critical current level, than the non-superconductor electrical path.
Abstract:
A superconducting electrical cable system is configured to be included within a utility power grid having a known fault current level. The superconducting electrical cable system includes a non-superconducting electrical path interconnected between a first node and a second node of the utility power grid. A superconducting electrical path is interconnected between the first node and the second node of the utility power grid. The superconducting electrical path and the non-superconducting electrical path are electrically connected in parallel, and the superconducting electrical path has a lower series impedance than the non-superconducting electrical path when the superconducting electrical path is operated below a critical current level and a critical temperature. The superconducting electrical path is configured to have a series impedance that is at least N times the series impedance of the non-superconducting electrical path when the superconducting electrical path is operated at or above one or more of the critical current level and the superconductor critical temperature. N is greater than 1 and is selected to attenuate, in conjunction with an impedance of the non-superconducting electrical path, the known fault current level by at least 10%.
Abstract:
A cooling system includes a first section of high temperature superconducting (HTS) cable configured to receive a first flow of coolant and to permit the first flow of coolant to flow therethrough. The system may further include a second section of high temperature superconducting (HTS) cable configured to receive a second flow of coolant and to permit the second flow of coolant to flow therethrough. The system may further include a cable joint configured to couple the first section of HTS cable and the second section of HTS cable. The cable joint may be in fluid communication with at least one refrigeration module and may include at least one conduit configured to permit a third flow of coolant between said cable joint and said at least one refrigeration module through a coolant line separate from said first and second sections of HTS cable.