Abstract:
A composition which is suitable for extrusion molding comprises a) a ceramic-forming material, and b) a cellulose derivative that has a median particle length of from 110 to 300 micrometers. Advantageously a cellulose ether is used that has been obtained by providing a moist cellulose derivative having a moisture content of from 35 to 90 percent, based on the total weight of the moist cellulose derivative, and drying-grinding the moist cellulose derivative in a gas-swept impact mill to a median particle length of from 110 to 300 micrometers.
Abstract:
A particulate cellulose derivative is obtained in a process of grinding and drying a moist cellulose derivative which comprises the steps of A) providing a cellulose derivative having a moisture content of from 60 to 95 percent, based on the total weight of the moist cellulose derivative; B) grinding and partially drying the moist cellulose derivative in a gas-swept impact mill; C) contacting the ground and partially dried cellulose derivative with an additional amount of a drying gas outside the gas-swept impact mill; and D) subjecting the cellulose derivative to partial depolymerization after having contacted the cellulose derivative with a drying gas in step C). The obtained particulate cellulose derivative has a high untapped bulk density, a good flowability and a low color intensity.
Abstract:
A particulate cellulose derivative is obtained in a process of grinding and drying a moist cellulose derivative which comprises the steps of A) providing a cellulose derivative having a moisture content of from 60 to 95 percent, based on the total weight of the moist cellulose derivative; B) grinding and partially drying the moist cellulose derivative in a gas-swept impact mill; C) contacting the ground and partially dried cellulose derivative with an additional amount of a drying gas outside the gas-swept impact mill; and D) subjecting the cellulose derivative to partial depolymerization after having contacted the cellulose derivative with a drying gas in step C). The obtained particulate cellulose derivative has a high untapped bulk density, a good flowability and a low color intensity.
Abstract:
A method of controlling or adjusting release of an active ingredient from a dosage form comprising the active ingredient and a polysaccharide derivative has been found. The method comprises the steps of a) providing a composition comprising a polysaccharide derivative and a controlled amount of a liquid diluent, based on the dry weight of the polysaccharide derivative, b) subjecting the composition to a dry-grinding operation to provide a dry-ground polysaccharide derivative, and c) incorporating the dry-ground polysaccharide derivative and an active ingredient into a dosage form.
Abstract:
A particulate cellulose derivative is obtained in a process of grinding and drying a moist cellulose derivative which comprises the steps of A) providing a cellulose derivative having a moisture content of from 60 to 95 percent, based on the total weight of the moist cellulose derivative, B) grinding and partially drying the moist cellulose derivative in a gas-swept impact mill; C) contacting the ground and partially dried cellulose derivative with an additional amount of a drying gas outside the gas-swept impact mill; and D) subjecting the cellulose derivative to partial depolymerization after having contacted the cellulose derivative with a drying gas in step C). The obtained particulate cellulose derivative has a high untapped bulk density, a good flowability and a low color intensity.
Abstract:
A mixture of a cellulose derivative and a liquid diluent is prepared which comprises at least 5 weight percent of the cellulose derivative, based on the total weight of the cellulose derivative and the liquid diluent. The mixing operating causes air to be entrapped in the mixture. The time for at least partially removing entrapped air is reduced by providing a cellulose derivative having a specific surface area of less than 0.20 m2/g measured by BET method for preparing the mixture.
Abstract:
A particulate cellulose derivative is obtained in a process of grinding and drying a moist cellulose derivative which comprises the steps of A) providing a cellulose derivative having a moisture content of from 60 to 95 percent, based on the total weight of the moist cellulose derivative, B) grinding and partially drying the moist cellulose derivative in a gas-swept impact mill; and C) contacting the ground and partially dried cellulose derivative with an additional amount of a drying gas outside the gas-swept impact mill. The obtained particulate cellulose derivative has a high untapped bulk density and a good flowability.
Abstract:
An edible composition comprising starch and cellulose ether particles, wherein the cellulose ether particles have a ratio M3.0/M2.0 of not more than 200 micrometers, wherein M3.0 is the number volume mean and M2.0 is the number surface area mean of the cellulose ether particles, and/or wherein the cellulose ether particles have a volume fraction of fibrous particles of no more than 40%, is useful for preparing a batter by mixing the edible composition with water. The batter is contacted with a food to prepare a battered food. The battered foods have a reduced oil and/or fat uptake when fried, as compared to fried non-battered food.
Abstract:
An edible composition comprising starch and cellulose ether particles, wherein the cellulose ether particles have a ratio M3.0/M2.0 of not more than 200 micrometers, wherein M3.0 is the number volume mean and M2.0 is the number surface area mean of the cellulose ether particles, and/or wherein the cellulose ether particles have a volume fraction of fibrous particles of no more than 40%, is useful for preparing a batter by mixing the edible composition with water. The batter is contacted with a food to prepare a battered food. The battered foods have a reduced oil and/or fat uptake when fried, as compared to fried non-battered food.
Abstract:
A method of controlling or adjusting release of an active ingredient from a dosage form comprising the active ingredient and a polysaccharide derivative has been found. The method comprises the steps of a) providing a composition comprising a polysaccharide derivative and a controlled amount of a liquid diluent, based on the dry weight of the polysaccharide derivative, b) subjecting the composition to a dry-grinding operation to provide a dry-ground polysaccharide derivative, and c) incorporating the dry-ground polysaccharide derivative and an active ingredient into a dosage form.