Abstract:
The present invention relates to a thermoplastic composition comprising: a) a polyamide component comprising at least three amide monomer units and b) a stabilizer characterized in that at least one of the at least three amide monomer units is an aliphatic amide monomer unit having a carbon to nitrogen ratio (C/N) equal to, or above 6.5, in that at least two of the at least three amide monomer units are semi-aromatic amide monomer units which polymerized provide at least one semi-crystalline semi-aromatic polyamide having a melting temperature of at least 290° C. as measured by DSC at a heating rate of 10° C./min according to standard ISO 1 1357-3 (2009), and in that the amount of aliphatic amide monomer unit is in the range from 20 to 60 wt. % relative to the total weight of the at least three amide monomer units in the polyamide components and the total amount of semi-aromatic amide monomer units is in the range from 40 to 80 wt. % relative to the total weight of the at least three amide monomer units in the polyamide components and characterized in that the stabilizer is chosen from a copper-containing stabilizer, an iron-containing stabilizer and a stabilizer containing copper and iron.
Abstract:
The invention relates to a sliding element for use in a chain transmission apparatus, comprising a sliding contact section for engagement in sliding contact with a chain, wherein the sliding contact section consists of a plastic material comprising a matrix polymer and dispersed therein graphite platelets comprising platelet particles having a thickness of at most 250 nm. The invention relates to an engine comprising a first sliding element in sliding contact with a second element, wherein at least a sliding contact section is made of such a plastic material comprising such thin graphite platelets. The invention further relates to a chain transmission apparatus, comprising a chain, and a sliding element comprising (i) a sliding contact section engaged in sliding contact with the chain and (ii) a main body reinforcing and supporting the sliding contact section, wherein the sliding contact section consists of such a plastic material.
Abstract:
The invention relates to a chain guide, respectively a chain tensioner for use in a lubricated sliding system, comprising a surface layer or bearing or comprising a sliding element comprising a surface layer, the surface layer being mainly made of a polymeric material containing a matrix polymer and optionally other components dispersed in said matrix polymer, wherein the matrix polymer consists of a semi-crystalline polyamide (SCPA) having a tensile modulus at 140° C. of at least 800 MPa (measured by the method according to ISO 527-1A). The invention also relates to a power train drive system comprising an engine, a transmission differential and a drive shaft system, a drive chain and a plastic component comprising a sliding element in contact with the lubricated drive chain, wherein the chain guide, the chain tensioner, respectively the sliding element has a coefficient of friction (CoF), measured in lubrication oil at 140° C. at a nominal contact pressure of 1 MPa and a speed of 1 m/s, of at most 0.07.
Abstract:
The present invention relates to a polymer composition, consisting of (A) 30-90 wt. % of at least one thermoplastic polymer comprising at least a semi-crystalline semi-aromatic polyamide (SSPA-1) in an amount in the range of 30-90 wt. %; (B) 10-70 wt. % of at least one reinforcing agent, and (C) 0-25 wt. % of one or more other components; wherein the SSPA-1 consists of (A-1-a) 90-100 wt. % of repeat units derived from (i) an aromatic dicarboxylic acid and (ii) diamines, and (A-1-b) 0-10 wt. % of repeat units derived from other monomers; the diamines (ii) consist of 80-95 mole % of a linear aliphatic diamine, 5-20 mole % of 2-methyl-pentamethylene diamine, and 0-10 mole % of other diamines; and the SSPA-1 has a melting temperature (Tm) of at least 300° C. The invention further relates to a molded part made of the composition, a process for making the composition and a process for making the molded part.