摘要:
The fracture resistance of titanium alloy matrix composites is increased by one of two methods. One method comprises the steps of consolidating a titanium alloy-fiber preform under suitable conditions to provide a metal matrix composite and thermally treating the thus-prepared composite at a temperature above the beta-transus temperature of the alloy for a brief time. In the second method, a composite having increased fracture resistance is produced by consolidating an alloy-fiber preform at a temperature above the normal consolidation temperature for a time less than the normal consolidation time.
摘要:
A method for fabricating a composite structure consisting of a filamentary material selected from the group consisting of silicon carbide, silicon carbide-coated boron, boron carbide-coated boron, titanium boride-coated silicon carbide and silicon-coated silicon carbide, embedded in an alpha-2 titanium aluminide metal matrix, which comprises the steps of modifying the desired filamentary material with at least one beta stabilizer, providing a beta-stabilized Ti.sub.3 Al foil, fabricating a preform consisting of alternating layers of foil and a plurality of at least one of the beta stabilizer-coated filamentary materials, and applying heat and pressure to consolidate the preform.The composite structure fabricated using the method of this invention is characterized by its lack of a denuded zone and absence of fabrication cracking.
摘要:
A method for protecting a titanium aluminide substrate against environmental degradation at higher temperatures, which comprises applying a layer of a ductile titanium alloy to at least one exterior surface of the substrate and applying an oxidation resistant coating to the exterior surface of the ductile layer. The titanium aluminide substrate may be monolithic or a fiber-reinforced composite structure. The oxidation resistant coating is an ion-plated coating of (a) a noble metal, such as gold or platinum, or (b) a coating of tungsten followed by an ion-plated coating of a noble metal.
摘要:
A method to increase the fracture resistance of titanium alloy matrix composites which comprises thermally treating a composite at a temperature about 5 to 10% above the beta-transus temperature of the alloy for about 4 to 60 minutes.
摘要:
A method for fabricating a titanium aluminide composite structure consisting of a filamentary material selected from the group consisting of silicon carbide, silicon carbide-coated boron, boron carbide-coated boron, titanium boride-coated silicon carbide and silicon-coated silicon carbide, embedded in an alpha-2 titanium aluminide metal matrix, which comprises the steps of providing a beta-stabilized Ti.sub.3 Al foil containing a sacrificial quantity of beta stabilizer element in excess of the desired quantity of beta stabilizer, fabricating a preform consisting of alternating layers of foil and a plurality of at least one of the aforementioned filamentary materials, and applying heat and pressure to consolidate the preform. In another embodiment of the invention, the beta-stabilized Ti.sub.3 Al foil is coated on at least one side with a thin layer of sacrificial beta stabilizer. The composite structure fabricated using the method of this invention is characterized by its lack of a denuded zone and absence of fabrication cracking.
摘要:
A method for fabricating a titanium aluminide composite structure consisting of a filamentary material selected from the group consisting of silicon carbide, silicon carbide-coated boron, boron carbide-coated boron, titanium boride-coated silicon carbide and silicon-coated silicon carbide, embedded in an alpha-2 titanium aluminide metal matrix, which comprises the steps of providing a first beta-stabilized Ti.sub.3 Al powder containing a desired quantity of beta stabilizer, providing a second beta-stabilized Ti.sub.3 Al powder containing a sacrificial quantity of beta stabilizer in excess of the desired quantity of beta stabilizer, coating the filamentary material with the second powder, fabricating a preform consisting of the thus-coated filamentary materials surrounded by the first powder, and applying heat and pressure to consolidate the preform.The composite structure fabricated using the method of this invention is characterized by its lack of a denuded zone and absence of fabrication cracking.
摘要:
A method for producing hollow titanium alloy articles which comprises casting a plurality of segments which can be joined to provide a unitary, hollow article, treating the cast segments in such manner as to refine the microstructure of the segments and superplastic forming/diffusion bonding the segments into the desired hollow article.
摘要:
A method for producing titamium alloy articles having a desired microstructure which comprises the steps of:(a) providing a prealloyed gamma titanium aluminide alloy powder;(b) filling a suitable die or mold with the powder;(c) consolidating the powder in the filled mold at a pressure of 30 Ksi or greater and at a temperature of about 70 to 95 percent of the alpha-2+gamma eutectoid temperature of the alloy, in degrees C.
摘要:
A method for producing an integral titanium alloy article having at least o regions, each region having a distinct microstructure, which comprises the steps of(a) providing a suitable mold for the article;(b) introducing a first titanium alloy into a first portion of the mold;(c) introducing a second titanium alloy in powder form into a second portion of the mold; and(d) hot compacting the first and second alloys in the mold to produce a substantially fully dense article.The second alloy may be the hydrided version of the first alloy, or may have a different overall composition from the first alloy, or may be hydrided and have a different overall composition from the first alloy.
摘要:
A method for improving the microstructure of cast titanium alloy articles which comprises the steps of hydrogenating the cast article at a temperature near or above the titanium-hydrogen eutectoid of 815.degree. C. (of about 780.degree. to 1020.degree. C.) to a hydrogen level of about 0.50 to 1.50 weight percent, cooling the thus-hydrogenated article to room temperature at a controlled rate, heating the thus-cooled, hydrogenated article to a temperature of about 650.degree. to 750.degree. C., applying a vacuum to dehydrogenate the article, and cooling the thus-dehydrogenated article at a controlled rate.