Abstract:
A waterproof vehicle or equipment cover with passive barometric air-pump is disclosed and is characterized as having a flexible, fluid impervious first layer of material, a flexible, porous second layer of material sized to generally correspond to the first layer of material and attached thereto at the perimeter of the second layer to create an enclosed void defined by the first layer and the second layer, and a plurality of flexible tubes, each tube having a first open end and a second open end, and having a plurality of apertures defined thereby, wherein each tube is located in the void, in spaced apart relation, to thereby permit ingress of gaseous fluid from the first end of each tube to the void and egress of gaseous fluid from the void to the second end of each tube. When the cover is placed over the vehicle or equipment with the first layer exposed to ambient conditions and the second layer proximate to the vehicle or equipment, the cover will shelter the vehicle or equipment from ambient conditions and the perforated, open-ended tubes will utilize ambient pressure differentials to create a passive circulation of air into and out of the enclosed void and other isolated areas between the outer layer and the covered vehicle or equipment.
Abstract:
A piston for developing compression within the cylinder of a combustion engine or other type compression generating apparatus; said piston being a two-piece assembly, whereas the topside portion, or traditionally known as the crown, being of relative disc-shape in relation to asymetrics of said piston, is connected to the lower portion, or traditionally known as the skirt, by a distinct fastening means that consist of said crown being concaved from the underside and having multiple vertically positioned ridges that align the inside perimeter of said underside. Said skirt has another set of matching vertically positioned ridges that align the outer perimeter at the top of said skirt, as said top is appropriately sized to match said underside of said crown so that said crown may be press-fitted to said top of said skirt for a rigid and complete piston assembly. Said two-piece assembly allows said piston to be comprehensively configured of two distinctively different material compositions, such as, said crown being composed of a latent-cast elemental metal and said skirt being composed of a resin-based epoxy.
Abstract:
A wrist-pin, in which the inner tubular area is traversed by intersecting plates that traverse at the rotating axis and extending along at least a portion of the length, and thereby, said inner tubular area is divided into longitudinal sections. Ideally, the connecting-rod is positioned and affixed to the wrist-pin so that the first of such plates form traversed alignment with length of the connecting-rod, for directly transmitting forces from the piston, through said first plate, to the connecting-rod, whereas such forces are no longer effectively exerted upon the upper circular asymmetry of the wrist-pin, to prevent flexing of the wrist-pin. When stroke cycle progression positions the piston to be perpendicular to the connecting-rod, the second plate functions as a supplemental reinforcement member for the equalized force distribution about said upper circular asymmetry of the wrist-pin, thus to also prevent flexing, thereof, and providing for the acquired rigidity of the wrist-pin to he composed of non-traditional high-strength polymer composites or thin-walled metal.
Abstract:
A subfolder insert, or otherwise short-termed a “subfolder” for depicting its sub-file contents, for holding related papers of its conventional file folder, and as such, the subfolder is inserted within the file folder, for separation of designated papers from other papers within the file folder. To avoid the subfolder causing the file folder from being bulky and obscuring the “sub-held” papers, its surface area is effectively less than the surface area of the sub-held papers of a respectively standard size, such as a U.S. letter size and legal size; this, too, allows visual, physical exposure of the sub-held papers for easy reference and manual retrieval from within the subfolder. The front and back panels of the subfolder are integrated along multiple adjacent edges, as ideally a vertical edge and the bottom horizontal edge.—This multi-plane integration allows 1) effective securing and isolation of papers while the subfolder is inside the file folder, 2) easy, lateral insertion and retrieval of designated papers from the subfolder, and 3) easy shuffling and straightening of papers while inside the subfolder. Another feature for easier handling is a pull-tab that flanges independently and is perpendicular to the vertically integrated edge, for holding with one hand while laterally pulling papers from the subfolder with the other hand. This pull-tab may be formed and die-cut from the subfolder's surface area, during manufacture. Also, the subfolder has a through-pass opening that intervenes the integration between the front and back panels. This opening allows the respective corners of voluminous papers to be easily shuffled and aligned along the planes of said integration which would otherwise tend to “bunch up” with resistance upon this area of the subfolder being enclosed.
Abstract:
A crankshaft being integrated with stemmed, inertia-forced lobes that increase engine and motor efficiency, in which a respective lobe extends and branches out to a single traversal side of crankshaft integration, and thus being right-angular to its integration. Essentially, the lobe is a structurally-curved limb having respective curvature about the traversal axis of crankshaft rotation. Hence, the ensuing inertia from the lobes actually rotate. in the same direction and in parallel with the crankshaft, and thus retaining at least 99% of lobe force, to significantly increase engine and motor output power. By contrast, conventional lobes retain only 50% of inertial force. Furthermore, if the lobes' outer extended, weighted portions are “loaded” with very heavy material, such as lead, then the power output becomes proportionally greater. A description with illustrations of a simple experiment demonstrates the “Coriolis effect” to affirm the extraordinary operation of this crankshaft.
Abstract:
The present invention, being a continuation-in-part of the Reinforced Wrist-pin, makes use of a traversing reinforcing matrix for the non-mechanical surfaces of the piston and connecting-rod components' assembly. Interposing holes, or spacial impressions, within the non-contacting surface planes of such components with reinforcing members formed within such holes, for providing supplemental structural strength, as the multitude of these holes reduce overall component weight for improved efficiency of mechanical operation. For a certain configuration of the surfaces the spacial impressions are through-pass openings within the component. For another configured condition, they only recede a certain distance. Also, a specific surface condition has vertical and horizontal reinforcement members, as another condition only has horizontal members. Cumulatively, these reinforced holes provide effective weight reduction for the force transmitting assembly without compromising structural strength.