摘要:
A resource allocation algorithm identifies a resource hogger in a wireless communication system data sharing arrangement and control shared resource overuse by the resource hogger. In one embodiment, the base station for a given sector in the system tracks the time-slot usage of each active user in the sector. If the usage for any user reaches a predetermined hogger threshold, normal target QoS enforcement is suspended for that user to allow more time slots to be allocated to the other, non-hogger users. When the resource hogger user's usage falls below the threshold, target QoS enforcement is returned to that user. Temporarily suspending target QoS enforcement for resource hoggers and allocating the remaining resources to other users prevents resource hoggers from deteriorating performance of the entire system.
摘要:
Systems and techniques for scheduling of data transmission to remote mobile units so as to provide at least an acceptably low level of delay. A scheduler computes an urgency value for each data stream serving a mobile unit and sets the urgency value equal to the highest urgency value of a data stream serving the mobile unit. The scheduler computes a scheduling priority for each mobile unit based on a computation that takes into account the urgency value of the mobile unit and schedules the highest priority mobile unit for service, selecting the highest priority data stream serving the mobile unit scheduled for transmission. The urgency value for a data stream depends on the sensitivity of the data stream to delay and the delay experienced by the data stream. Computation of the urgency value may take into account a delay limit associated with the data stream.
摘要:
A technique for controlling a packet data network to maintain network stability and efficiently utilize network resources through mechanisms involving per-destination queues and urgency weights for medium access control. The technique jointly controls congestion, scheduling, and contention resolution on hop-by-hop basis, such that the length of queues of packets at a node does not become arbitrarily large. In one embodiment, queue lengths and urgency weights may be transmitted and received via medium access control messages.
摘要:
A technique for controlling a packet data network to maintain network stability and efficiently utilize network resources through mechanisms involving per-destination queues and urgency weights for medium access control. The technique jointly controls congestion, scheduling, and contention resolution on hop-by-hop basis, such that the length of queues of packets at a node does not become arbitrarily large. In one embodiment, queue lengths and urgency weights may be transmitted and received via medium access control messages.
摘要:
A new approach is described for scheduling uplink or downlink transmissions in a network having remote terminals communicating with a central hub. The scheduler keeps track of a token count. The token count for a given remote terminal is incremented by a target amount in each pertinent timeslot, but is also decremented each time that the remote terminal is served. The amount of the decrement for one timeslot is the amount of data served, i.e., transmitted to or from the remote terminal, in that timeslot. In exemplary embodiments of the invention, the target amount by which T is incremented depends on the current value of T. Whenever the token count is non-negative (i.e., whenever it has a positive or zero value), the target amount is a desired floor, or lower limit, on an average amount of data delivered to or from the given remote terminal in one timeslot. Whenever the token count is negative, the target amount is a desired ceiling, or upper limit, on the same average amount of data delivered. In each timeslot, each remote terminal is assigned a weight proportional to a product of at least two factors: a function relating the individual remote terminal to overall network performance, and at least one increasing function of the token count. Each time a scheduling decision is made, the scheduler selects for service that remote terminal having the highest weight.
摘要:
A network device of a communication network is configured to implement coordinated scheduling and processor rate control. In one aspect, packets are received in the network device and scheduled for processing from one or more queues of that device. An operating rate of a processor of the network device is controlled based at least in part on at least one of an arrival rate of the packets and a number of the packets stored in the one or more queues. As one example of processor rate control based on packet arrival rate, the operating rate of the processor may be controlled by accumulating a designated number of the received packets, determining an average arrival rate of the accumulated packets, and setting the operating rate of the processor based on the average arrival rate.
摘要:
A network device of a communication network is configured to implement coordinated scheduling and processor rate control. In one aspect, packets are received in the network device and scheduled for processing from one or more queues of that device. An operating rate of a processor of the network device is controlled based at least in part on an optimal operating rate of the processor that is determined using a non-zero base power of the processor. For example, the operating rate of the processor may be controlled such that the processor either operates at or above the optimal operating rate, or is substantially turned off. The optimal operating rate of the processor may be selected so as to fall on a tangent line of a power-rate curve of the processor that also passes through an origin point of a coordinate system of the power-rate curve.
摘要:
A method is disclosed, for designing an access network that is to carry communication traffic between end nodes and a core network. Information is provided that describes end node locations, the level of demand associated with each end node, available trunk types and their related capacities, and a cost structure. The cost structure includes a fixed overhead cost for each trunk type, and a service charge per unit distance for each trunk type. The provided information is incorporated in a linear program to find an optimal-cost access network. The linear program is solved to obtain a provisional solution that defines the composition and usage of each link of the optimal-cost access network. For each such link, the composition is defined by a fractional level of investment (incurring a like fraction of the corresponding overhead charge) in each pertinent trunk type. The provisional solution is rounded such that each trunk in which there is a fractional investment is either removed, or replaced by a trunk in which there is an integral investment.
摘要:
A network device of a communication network is configured to implement coordinated scheduling and processor rate control. In one aspect, packets are received in the network device and scheduled for processing from one or more queues of that device. An operating rate of a processor of the network device is controlled based at least in part on an optimal operating rate of the processor that is determined using a non-zero base power of the processor. For example, the operating rate of the processor may be controlled such that the processor either operates at or above the optimal operating rate, or is substantially turned off. The optimal operating rate of the processor may be selected so as to fall on a tangent line of a power-rate curve of the processor that also passes through an origin point of a coordinate system of the power-rate curve.
摘要:
A network comprising a plurality of network devices is configured to implement scheduling for energy efficiency. In one aspect, a set of network devices interconnected in a line within a network is identified, and a common frame size is established. For each of the network devices of the line, active and inactive periods for that network device are scheduled in a corresponding frame having the common frame size, with the frames in the respective network devices of the line being time shifted relative to one another by designated offsets. For each of one or more of the active periods of each of the network devices of the line, received packets are scheduled for processing in that network device.