摘要:
This invention comprises a combined optical wavefront aberrometer and topographer system that is used in conjunction with a contact lens that has a plurality of fiducial marks disposed on the lens. The fiducial marks are located radially inside of the undilated pupil's diameter. The optical imaging capacity of the aberrometer is used to measure and monitor any misalignments of the contact lens's position (XY decentration) and/or rotation. Image analysis algorithms are used to track the positions of the fiducial marks, and, hence, the amount of geometric misalignment of the contact lens can be calculated. The fiducial marks can comprise micro ink spots, or depressions in the surface of the contact lens (e.g., divots, dimples, pits), or other small surface features, including raised bumps, which can help to stabilize motions of the contact lens on the eye.
摘要:
Method steps for correcting vision in an eye that uses a customized phakic IOL composing: (1) measuring one or more wavefront aberrations of the eye: (2) designing a wavefront-customized correction profile for an Intraocular Lens (IOL); (3) creating a customized IOL with the customized correction profile; and (4) implanting the customized IOL in the eye. Alternatively, an uncorrected IOL is first implanted and aligned in the eye, followed by in-situ scanning a femtosecond laser spot across the implanted IOL to locally change the Index of Refraction of the IOL material and create an in-situ customized IOL.
摘要:
A system for correcting vision in an eye that uses a premium, customized IOL, the system comprising: (1) optical aberrometer means for measuring wavefront aberrations of the eye; (2) computer means for designing a wavefront-customized correction profile for the IOL; (3) manufacturing means for creating a customized IOL with the wavefront-corrected profile; and (4) surgical means for implanting the customized IOL in the eye. Alternatively an uncorrected IOL is first implanted and aligned in the eye, followed by in-situ scanning a femtosecond laser spot across the implanted IOL to locally change an index of Refraction of the IOL material in-situ.
摘要:
This invention, a Purkinjenator™ optical system, is an eye-tracker and methodology for tracking Purkinje reflection images from a human eye in real-time, which allows for the XYZ position and tip/tilt of structures inside the eye to be determined in real-time. When used in combination with programmable groups of IR LED light sources, unique patterns of Purkinje reflections from internal surfaces (and corneal surfaces) can be identified. Thus, XYZ positioning and tip/tilt of internal structures can be accurately and rapidly determined. An Optical Coherence Tomography (OCT) optical system can be combined with the Purkinjenator™ optical system to provide Z-axis distance information.
摘要:
A method for optimizing an ophthalmic treatment, comprising: measuring a patient's eye with an ophthalmic measurement instrument, fabricating a trial correction lens and testing it on the patient's eye, determining a score or success criteria for the trial correction, using the score or success criteria to provide training information to a machine-learning algorithm, and using the machine-learning algorithm to determine an optimal ophthalmic correction.
摘要:
This invention relates to optical methods and optical systems for making both on-axis and wide-field, peripheral off-axis wavefront measurements of an eye; and for designing and manufacturing wavefront-guided customized contact lens useful for myopia control. The wide-field optical instrument can comprise either (1) a multi-axis optical configuration using multiple off-axis beamlets, or (2) an instrument comprising a rotatable scanning mirror that generates off-axis probe beams.
摘要:
Devices, systems, and methods that facilitate optical analysis, particularly for the diagnosis and treatment of refractive errors of the eye. An optical diagnostic method for an eye includes obtaining a sequence of aberration measurements of the eye, identifying an outlier aberration measurement of the sequence of aberration measurements, and excluding the outlier aberration measurement from the sequence of aberration measurements to produce a qualified sequence of aberration measurements. The sequence of aberrations measurements can be obtained by using a wavefront sensor. An optical correction for the eye can be formulated in response to the qualified sequence of aberration measurements.
摘要:
A phase diversity wavefront sensor includes an optical system including at least one optical element for receiving a light beam; a diffractive optical element having a diffractive pattern defining a filter function, the diffractive optical element being arranged to produce, in conjunction with the optical system, images from the light beam associated with at least two diffraction orders; and a detector for detecting the images and outputting image data corresponding to the detected images. In one embodiment, the optical system, diffractive optical element, and detector are arranged to provide telecentric, pupil plane images of the light beam. A processor receives the image data from the detector, and executes a Gerchberg-Saxton phase retrieval algorithm to measure the wavefront of the light beam.
摘要:
A system measures a corneal topography of an eye. The system includes a group of first light sources arranged around a central axis, the group being separated from the axis by a radial distance defining an aperture in the group; a plurality of second light sources; a detector array; and an optical system adapted to provide light from the second light sources through the aperture to a cornea of an eye, and to provide images of the first light sources and images of the second light sources from the cornea, through the aperture, to the detector array. The optical system includes an optical element having a focal length, f. The second light sources are disposed to be in an optical path approximately one focal length, f, away from the optical element.
摘要:
A method of measuring aberrations of a three-dimensional structure of an optical system, such as an eye, includes creating a plurality of light beams, optically imaging the light beams and projecting the light beams onto different locations in an optical system, receiving scattered light from each of the locations, and detecting individual wavefronts of the scattered light. The plurality of light beams may be created and projected simultaneously or sequentially. A system for measuring aberrations of a three-dimensional structure of an optical system includes a light source creating a plurality of light beams, an optical imaging system optically imaging the light beams and projecting the light beams onto different locations in the target optical system, and a wavefront sensor receiving scattered light from each of the locations and detecting individual wavefronts of the scattered light.