摘要:
A handover technique in a cellular radio communication system (100) for handing over a radio (102) from a first channel in a first cell to a second channel in a second cell, the technique comprising generating a fill-in message extrapolated from a message of the radio on the first channel and communicating the fill-in message when the radio has ceased communicating on the first channel; and terminating the fill-in message when the radio begins communicating on the second channel, thereby reducing handover disruption. The messages may be digitized audio messages. A timer (110, 118) may be employed to allow the fill-in message to terminate at substantially the same time as the radio begins communicating on the second channel. Alternatively, the fill-in message may be directly terminated (FIG. 2) in response to the radio beginning to communicate on the second channel. If the messages are data messages, no fill-in message is generated and the handover is completed directly (FIG. 2) in response to the radio beginning to communicate on the second channel.
摘要:
A method and system for adaptively allocating shared communication resources in response to an emergency event are disclosed herein. In one embodiment, the method includes identifying a response zone 115 associated with an emergency event and dispatching emergency responders 114, 116, and 118 having communication devices 234a-234m to the response zone 115. The dispatching procedure includes adjusting access of the emergency responder communication devices to shared communications resources. Adjusting access to shared communication resources includes identifying one or more of the emergency responder communication devices to be dispatched to the identified response zone and specifying a quality of service (QoS) priority level of at least one of the identified emergency responder communication devices. Adjusting access to shared communication resources further includes specifying a QoS priority level for communication devices located within the identified response zone.
摘要:
This method (110) adaptively sends control messages and a predetermined number of fast repeats of the control messages on the traffic channel of a mobile communication system. For a control message which has already been lost (118), the system sends the control message again with a first number of fast repeats (130) if the traffic channel is operating at a full rate; and the system sends the control message with a second number of fast repeats if the traffic channel is operating at a subrate. The number of fast repeats is selectable. If the control message has not been previously sent and the traffic channel is operating at a subrate (124), the system will send the control message with a third number of fast repeats (128).
摘要:
A method for adaptive power control in a mobile communication system (100) determines (120) whether an RF loading factor (110) is greater than a threshold value. If the RF loading factor is above the threshold value, the method reduces call quality (140). Next, a determination is made whether the RF loading factor is below a second threshold value (150). If the RF loading factor is below the second threshold value, the call quality of the mobile communication system is increased (160).
摘要:
A narrowband communication system provides wideband data services in a secondary service band. This limits the impact on primary services in peak traffic regions in that the primary service band is not required to download wideband data from a communication node (e.g., a satellite) to a mobile terminal. The narrowband communication system implements a handoff protocol (400) that rate negotiates a channel bandwidth of an active connection (404) to the amount of channels that are available in a new cell. The narrowband communication system preempts (414) lower priority subscribers when a higher priority (408) high-speed data terminal requires access to the system and a requested channel assignment is not available (412). The complexity of a high-speed data terminal communication chipset is reduced by a receiver design that minimizes the range of frequencies that are required to be demodulated.
摘要:
In a satellite communication system, ring-alerts are broadcast in a sequence that maximizes the time between when ring-alerts are issued in any adjacent antenna beam. Satellite power is conserved by allowing time for a subscriber unit to respond, after which subsequent ring-alerts directed at that subscriber are canceled. When a gateway receives a request for a ring-alert, the satellite and the antenna beams are identified which are currently serving the location of the subscriber unit being called. The satellite is provided a list of antenna beams and proceeds to broadcast ring-alerts directed at subscriber units within the identified antenna beams. Unsent ring-alerts are canceled when responses from the subscriber units are received.
摘要:
A method and apparatus for controlling interference in a wireless communication system includes a first step of performing 500 a handoff measurement of a signal parameter for a current site and for nearby sites, and performing 502 a comparison of the signal parameters to select the nearby site having the strongest signal parameter. A next step 504 includes defining a target maximum allowable noise rise for the selected nearby site. A next step 506 includes calculating an upper bound for at least one operating parameter in the current site. A next step 508 includes determining whether a maximum for the at least one operating parameter exceeds 510 the upper bound. A next step 514 includes constraining the at least one operating parameter to no more than the upper bound if the maximum for the at least one operating parameter exceeds the upper bound.
摘要:
A method and system for adaptively allocating shared communication resources in response to an emergency event are disclosed herein. In one embodiment, the method includes identifying a response zone 115 associated with an emergency event and dispatching emergency responders 114, 116, and 118 having communication devices 234a-234m to the response zone 115. The dispatching procedure includes adjusting access of the emergency responder communication devices to shared communications resources. Adjusting access to shared communication resources includes identifying one or more of the emergency responder communication devices to be dispatched to the identified response zone and specifying a quality of service (QoS) priority level of at least one of the identified emergency responder communication devices. Adjusting access to shared communication resources further includes specifying a QoS priority level for communication devices located within the identified response zone.
摘要:
A method of generating a handoff candidate list (490) to provide to a mobile station (302) may include providing the mobile station in a multi-sector handoff state (360) with a unique combination of a plurality of sectors (362, 363, 364), and recording at least one target sector (371, 372, 373) selected from a plurality of available sectors (366) that is added to the unique combination of the plurality of sectors. The recording step may be iteratively performed whenever the mobile station is in the multi-sector handoff state with the unique combination of the plurality of sectors thereby defining the at least one target sector that has actually been used by the mobile station in the multi-sector handoff state with the unique combination of the plurality of sectors. Upon the mobile station entering the multi-sector handoff state with the unique combination of the plurality of sectors, providing the handoff candidate list to the mobile station, wherein the handoff candidate list comprises the at least one target sector.
摘要:
A system and method of evaluating the radio coverage of a geographic area serviced by a digital cellular radiotelephone communication system is described which comprises a plurality of base stations each having a transmitter and a receiver and a plurality of mobile units having co-located transmitters and receivers for transmitting and receiving communication message signals between the base stations and a mobile unit. During operation, the position of at least one of the mobile units operating within the geographic area is located when a call is received by a base station. The base station monitors the signal quality of the call and collects information relevant to the actual performance of the communication system. The mobile unit location and corresponding signal quality data are passed from the base station to a central operation and maintenance unit which collects the data, performs all necessary analytic and arithmetic computations, and provides a user-friendly representation of the characteristics of the radio coverage. With this representation of the radio coverage characteristics, the system operator can quickly and efficiently diagnose coverage deficiencies and take the necessary corrective action. By continuously monitoring subscriber calls and updating the pictographic representations, the system operator can actually observe the effect of the adopted modifications in a pseudo real-time fashion.