摘要:
A system for controlling contention between conflicting transactions in a transactional memory system. During operation, the system receives a request to access a cache line and then determines if the cache line is already in use by an existing transaction in a cache state that is incompatible with the request. If so, the system determines if the request is from a processor which is in a polite mode. If this is true, the system denies the request to access the cache line and continues executing the existing transaction.
摘要:
A set of structures and techniques are described herein whereby an exemplary concurrent shared object, namely a shared skip list, can be implemented in a lock-free manner. Indeed, we have developed a number of interesting variants of a lock-free shared skip-list, including variants that may be employed to provide a lock-free shared dictionary. In some variants, a key-value dictionary is implemented.
摘要:
One embodiment of the present invention provides a system that ensures that progress is made in an environment that supports execution of obstruction-free operations. During execution, when a process pi invokes an operation, the system checks a panic flag, which indicates whether a progress-ensuring mechanism is to be activated. If the panic flag is set, the progress-ensuring mechanism is activated, which causes the system to attempt to perform the operation by coordinating actions between processes to ensure that progress is made in spite of contention between the processes. On the other hand, if the panic flag is not set, the system attempts to perform the operation essentially as if the progress-ensuring mechanism were not present. In this case, if there is an indication that contention between processes is impeding progress, the system sets the panic flag, which causes the progress-ensuring mechanism to be activated so that processes will coordinate their actions to ensure that progress is made.
摘要:
The design of nonblocking linked data structures using single-location synchronization primitives such as compare-and-swap (CAS) is a complex affair that often requires severe restrictions on the way pointers are used. One way to address this problem is to provide stronger synchronization operations, for example, ones that atomically modify one memory location while simultaneously verifying the contents of others. We provide a simple and highly efficient nonblocking implementation of such an operation: an atomic k-word-compare single-swap operation (KCSS). Our implementation is obstruction-free. As a result, it is highly efficient in the uncontended case and relies on contention management mechanisms in the contended cases. It allows linked data structure manipulation without the complexity and restrictions of other solutions. Additionally, as a building block of some implementations of our techniques, we have developed the first nonblocking software implementation of load-linked/store-conditional that does not severely restrict word size.
摘要:
A method for inserting an object into a concurrent set including obtaining a key associated with the object, traversing the concurrent set using a first thread containing the key, identifying a first insertion point while traversing the concurrent set, where the first insertion point is before a current node and after a predecessor node, obtaining a first lock for the predecessor node after identifying the first insertion point, validating the predecessor node and the current node after obtaining the lock, inserting a new node into the concurrent set after validating, where the new node is associated with the object, and releasing the first lock after inserting the new node.
摘要:
A method for inserting an object into a concurrent set including obtaining a key associated with the object, traversing the concurrent set using a first thread containing the key, identifying a first insertion point while traversing the concurrent set, where the first insertion point is before a current node and after a predecessor node, obtaining a first lock for the predecessor node after identifying the first insertion point, validating the predecessor node and the current node after obtaining the lock, inserting a new node into the concurrent set after validating, where the new node is associated with the object, and releasing the first lock after inserting the new node.
摘要:
The design of nonblocking linked data structures using single-location synchronization primitives such as compare-and-swap (CAS) is a complex affair that often requires severe restrictions on the way pointers are used. One way to address this problem is to provide stronger synchronization operations, for example, ones that atomically modify one memory location while simultaneously verifying the contents of others. We provide a simple and highly efficient nonblocking implementation of such an operation: an atomic k-word-compare single-swap operation (KCSS). Our implementation is obstruction-free. As a result, it is highly efficient in the uncontended case and relies on contention management mechanisms in the contended cases. It allows linked data structure manipulation without the complexity and restrictions of other solutions. Additionally, as a building block of some implementations of our techniques, we have developed the first nonblocking software implementation of load-linked/store-conditional that does not severely restrict word size.
摘要:
The design of nonblocking linked data structures using single-location synchronization primitives such as compare-and-swap (CAS) is a complex affair that often requires severe restrictions on the way pointers are used. One way to address this problem is to provide stronger synchronization operations, for example, ones that atomically modify one memory location while simultaneously verifying the contents of others. We provide a simple and highly efficient nonblocking implementation of such an operation: an atomic k-word-compare single-swap operation (KCSS). Our implementation is obstruction-free. As a result, it is highly efficient in the uncontended case and relies on contention management mechanisms in the contended cases. It allows linked data structure manipulation without the complexity and restrictions of other solutions. Additionally, as a building block of some implementations of our techniques, we have developed the first nonblocking software implementation of load-linked/store-conditional that does not severely restrict word size.
摘要:
The design of nonblocking linked data structures using single-location synchronization primitives such as compare-and-swap (CAS) is a complex affair that often requires severe restrictions on the way pointers are used. One way to address this problem is to provide stronger synchronization operations, for example, ones that atomically modify one memory location while simultaneously verifying the contents of others. We provide a simple and highly efficient nonblocking implementation of such an operation: an atomic k-word-compare single-swap operation (KCSS). Our implementation is obstruction-free. As a result, it is highly efficient in the uncontended case and relies on contention management mechanisms in the contended cases. It allows linked data structure manipulation without the complexity and restrictions of other solutions. Additionally, as a building block of some implementations of our techniques, we have developed the first nonblocking software implementation of load-linked/store-conditional that does not severely restrict word size.
摘要:
In general, in one aspect, the invention relates to a method of establishing a queue-based lock including inserting a first qnode into a local queue, where the first qnode is associated with a first thread, splicing the local queue into the global queue, obtaining a lock for the first thread when the first qnode is at the head of the global queue, and executing a critical section of the first thread after obtaining the lock.