摘要:
The invention is directed to optimizing setup of a VCAT connections using (largest) CCAT containers so as to minimize the number of cross-connection commands needed to enable data transfer. A system and method are provided for enhancing VCAT networks to include faster service restoration rates and faster connection setup times. One embodiment includes expanding available VCAT timeslots to include available CCAT timeslots. A routing and signaling control module alerts a source network element, internal network elements and a destination network element that the data transmission includes VCAT payloads rather than the expected CCAT payloads. By issuing this alert, the routing and signaling control module instructs an end-point monitoring function to overlook any mismatch between the expected CCAT rate and the received VCAT traffic. Otherwise, if the mismatch is not overlooked, then the end-point monitoring function will squelch the received VCAT traffic, which terminates the data communication
摘要:
A method of managing a network comprising a plurality of nodes. Each node maintains a respective topology database containing topology information of the network within a local region of the node, the local region encompassing a subset of the plurality of nodes of the network. The nodes of the network implementing a Recursive Path Computation algorithm to compute end-to-end routes through the network.
摘要:
A method and system for routing a connection on a communication network. A first bandwidth pool is classified as a long lived bandwidth pool and a second bandwidth pool is classified as a short lived bandwidth pool. The long lived bandwidth pool is used to route connections having a duration that are expected to equal or exceed a predetermined time. The short lived bandwidth pool is used to route connections having a duration that are not expected to exceed the predetermined time. A request to route a connection on the communication network is received. At least one characteristic of the connection is determined and is used to determine whether to route the connection on the long lived bandwidth pool or short lived bandwidth pool.
摘要:
A method of reconfiguring a network having a transport plane for carrying subscriber traffic flows within end-to-end connections, a control plane for managing at least a portion of resources of the transport plane allocated to each connection, and a management plane for implementing management functions in the control plane and any resources of the transport plane that are not managed by the control plane. The method comprises installing an updated version of a control plane name space for a target node of the network. For each connection traversing the target node: a control plane to management plane migration is performed for removing connection state in the control plane associated with the connection, so as to transfer ownership of the connection from the control plane to the management plane; followed by a management plane to control plane migration for installing new connection state in the control plane associated with the connection, so as to transfer ownership of the connection from the management plant to the control plane, the new connection state being defined using the updated version of the control plane name space.
摘要:
A method, node, and network for reduced link bandwidth updates from a first node and a second node forming a link in a network includes, responsive to establishment or release of one or more connections on the link, flooding an update related thereto from only a master node that is one of the first node and the second node; responsive to a link failure associated with the link, flooding an update related thereto from both the first node and the second node; and, responsive to a change in parameters associated with the link, flooding an update related thereto from both the first node and the second node. The flooding can be part of a control plane associated with the network and/or to a Software Defined Networking (SDN) controller.
摘要:
A method and system for changing the extent of data plane resources controlled by a control plane for a network connection which spans a contiguous set of nodes controlled by existing network control resources is disclosed. This is done in a non-disruptive manner. This typically involves two steps: i) Creating a new set of control plane resources for said network connection such that said data plane resources are shared with said existing network control resources; and ii) then terminating the existing network control resources such that said data plane resources are fully transferred to the new set of control plane resources without disrupting said network connection. The existing network control resources can be either a control plane resource or a non control plane resource. An example of a non control plane resource is network management software (e.g., an OSS (Operation Support System)), which forms part of the Management Plane. It should be noted that this does not need to be done for a complete end-to-end connection, but rather can be executed for the portion of the end-to-end connection which is to be controlled by the control plane.
摘要:
A resilient virtual Ethernet ring has nodes interconnected by working and protection paths. If a span fails, the two nodes immediately on either side of the failure are cross-connected to fold the ring. Working-path traffic is cross-connected onto the protection path at the first of the two nodes and is then cross-connected back onto the working path at the second of the two nodes so that traffic always ingresses and egresses the ring from the working path. A traffic originating node, upon determining that transmitted packets are being looped back due to a fault on a primary path, is adapted to switch transmission of data packets from the primary path to a secondary path.
摘要:
A method and system for changing the extent of data plane resources controlled by a control plane for a network connection which spans a contiguous set of nodes controlled by existing network control resources is disclosed. This is done in a non-disruptive manner. This typically involves two steps: i) Creating a new set of control plane resources for said network connection such that said data plane resources are shared with said existing network control resources; and ii) then terminating the existing network control resources such that said data plane resources are fully transferred to the new set of control plane resources without disrupting said network connection. The existing network control resources can be either a control plane resource or a non control plane resource. An example of a non control plane resource is network management software (e.g., an OSS (Operation Support System)), which forms part of the Management Plane. It should be noted that this does not need to be done for a complete end-to-end connection, but rather can be executed for the portion of the end-to-end connection which is to be controlled by the control plane.