摘要:
Photovoltaic cells comprising an active layer comprising, as p-type material, conjugated polymers such as polythiophene and regioregular polythiophene, and as n-type material at least one fullerene derivative. The fullerene derivative can be C60, C70, or C84. The fullerene also can be functionalized with indene groups. Improved efficiency can be achieved.
摘要:
Photovoltaic cells comprising an active layer comprising, as p-type material, conjugated polymers such as polythiophene and regioregular polythiophene, and as n-type material at least one fullerene derivative. The fullerene derivative can be C60, C70, or C84. The fullerene also can be functionalized with indene groups. Improved efficiency can be achieved.
摘要:
Photovoltaic cells comprising an active layer comprising, as p-type material, conjugated polymers such as polythiophene and regioregular polythiophene, and as n-type material at least one fullerene derivative. The fullerene derivative can be C60, C70, or C84. The fullerene also can be functionalized with indene groups. Improved efficiency can be achieved.
摘要:
Photovoltaic cells comprising an active layer comprising, as p-type material, conjugated polymers such as polythiophene and regioregular polythiophene, and as n-type material at least one fullerene derivative. The fullerene derivative can be C60, C70, or C84. The fullerene also can be functionalized with indene groups. Improved efficiency can be achieved.
摘要:
Photovoltaic cells comprising an active layer comprising, as p-type material, conjugated polymers such as polythiophene and regioregular polythiophene, and as n-type material at least one fullerene derivative. The fullerene derivative can be C60, C70, or C84. The fullerene also can be functionalized with indene groups. Improved efficiency can be achieved.
摘要:
Photovoltaic cells comprising an active layer comprising, as p-type material, conjugated polymers such as polythiophene and regioregular polythiophene, and as n-type material at least one fullerene derivative. The fullerene derivative can be C60, C70, or C84. The fullerene also can be functionalized with indene groups. Improved efficiency can be achieved.
摘要:
An OLED application such as a light source is disclosed which has OLED elements utilizing an active EL (electro-luminescent) layer comprised of two elements, a host element emitting in a first spectrum and a dopant element emitting in a second spectrum different from the first. The OLED device also has a luminescent material disposed on the substrate or transparent electrode which converts the emission spectrum of light from the active EL layer.
摘要:
In a first embodiment of the present invention, in order to increase the number of holes injected into the emissive layer, an intermixed layer is formed from the intermixing of the hole transport layer (“HTL”) and the emissive layer. The intermixed layer is between the HTL and the emissive layer of the OLED device. Alternatively, in a second embodiment of the present invention, in order to increase the number of holes injected into the emissive layer, a separate interlayer is incorporated within the OLED device. The interlayer is comprised of a hole transport material in which one of its components is at least partially replaced with one of the components of the emissive layer that is responsible for hole injection and transport. The separate interlayer is between the anode and the emissive layer of the OLED device. One or more intermediate layers may be present between the interlayer and the anode such as, for example, a HTL may be present between those two layers.
摘要:
What is disclosed is an organic light emitting diode (OLED) based device which has been exposed to an environment including a mixture of gases and moisture in the form of water vapor, for a specified period of time prior to the device being encapsulated. The environment may contain oxygen, nitrogen, hydrogen, argon or atmospheric air or a combination thereof.
摘要:
What is disclosed is an organic light emitting diode (OLED) based device which has been exposed to an environment including a mixture of gases and moisture in the form of water vapor, for a specified period of time prior to the device being encapsulated. The environment may contain oxygen, nitrogen, hydrogen, argon or atmospheric air or a combination thereof.