摘要:
Photovoltaic cells comprising an active layer comprising, as p-type material, conjugated polymers such as polythiophene and regioregular polythiophene, and as n-type material at least one fullerene derivative. The fullerene derivative can be C60, C70, or C84. The fullerene also can be functionalized with indene groups. Improved efficiency can be achieved.
摘要:
Photovoltaic cells comprising an active layer comprising, as p-type material, conjugated polymers such as polythiophene and regioregular polythiophene, and as n-type material at least one fullerene derivative. The fullerene derivative can be C60, C70, or C84. The fullerene also can be functionalized with indene groups. Improved efficiency can be achieved.
摘要:
Photovoltaic cells comprising an active layer comprising, as p-type material, conjugated polymers such as polythiophene and regioregular polythiophene, and as n-type material at least one fullerene derivative. The fullerene derivative can be C60, C70, or C84. The fullerene also can be functionalized with indene groups. Improved efficiency can be achieved.
摘要:
Photovoltaic cells comprising an active layer comprising, as p-type material, conjugated polymers such as polythiophene and regioregular polythiophene, and as n-type material at least one fullerene derivative. The fullerene derivative can be C60, C70, or C84. The fullerene also can be functionalized with indene groups. Improved efficiency can be achieved.
摘要:
Photovoltaic cells comprising an active layer comprising, as p-type material, conjugated polymers such as polythiophene and regioregular polythiophene, and as n-type material at least one fullerene derivative. The fullerene derivative can be C60, C70, or C84. The fullerene also can be functionalized with indene groups. Improved efficiency can be achieved.
摘要:
Improved methods of fullerene derivative production including use of less solvent, or elimination of solvent, as well as use of shorter reaction times and higher reaction temperatures. Methods useful for production of bis-, tris-, tetra-, penta-, and hexa-fullerene derivatives. Indene is a preferred derivative. The derivatives used in active layers for solar cell applications.
摘要:
Improved methods of fullerene derivative production including use of less solvent, or elimination of solvent, as well as use of shorter reaction times and higher reaction temperatures. Methods useful for production of bis-, tris-, tetra-, penta-, and hexa-fullerene derivatives. Indene is a preferred derivative. The derivatives used in active layers for solar cell applications.
摘要:
Compositions for use in HIL/HTL applications include intrinsically conductive polymer, planarizing agent, and dopant, which are soluble in non-aqueous solvents. Block copolymers of regioregular alkyl/alkoxy- and aryl-substituted polythiophenes can be used. The compositions can be formed into thin films. Excellent efficiency and lifetime stability can be achieved.
摘要:
Latent doping is provided wherein a conducting polymer is mixed with a dopant in solution without the doping reaction occurring unless solvent is removed. Regioregular polythiophenes are a particularly important embodiment. A composition comprising (i) at least one polymer comprising conjugation in the polymer backbone, (ii) at least one dopant for the polymer, (iii) at least one solvent for the polymer and latent dopant, wherein the polymer, the latent dopant, and the solvent are formulated so that the latent dopant does not substantially dope the polymer when formulated, but does substantially react with the polymer when the solvent is removed. Formulation of the composition can comprise adjusting the order of mixing, the amounts of the components, and the temperature. Methods of formulating the compositions and methods of using the compositions are also provided. OLED, PLED, photovoltaic, and other organic electronic devices can be fabricated.
摘要:
Organic photovoltaic (OPV) devices comprising an organic semiconductor doped with a metal or organic dopant to form an interfacial modification layer, where the layer is disposed on an active layer including a conjugated polymer and a fullerene are described. In the layer, the organic semiconductor can be BPhen or TPBI, and the dopant can be a metal or an organic material. In the active layer, the conjugated polymer can be P3HT and the fullerene can be PCBM or indenyl-substituted fullerene. Improved OPV efficiency and lifetime can be achieved. Good testing results are obtained despite high humidity and high temperature, and modules can be made.