摘要:
Two design variations which allow multiple processors to start up using a single ROM are disclosed. In each design, a single, primary processor is allowed to perform a complete POST while the remaining, secondary processors are directed in the course of their POST to perform a more limited initialization sequence. At power on, the primary processor begins a normal POST, while the secondary processors are held until a vector is placed into a redirection vector location. Each secondary processor is then subsequently started, using its own initialization code located at the address indicated by the redirection vector. The first technique is applicable to general multiprocessor systems because the implementation of this design can be run either from external software or from an addition to the operating system of the particular machine on which it is being used. The second technique is more specifically oriented to a particular system, and includes the use of an identity register to differentiate between primary and secondary processors.
摘要:
Two design variations which allow multiple processors to start up using a single ROM. In each design, a single, primary processor is allowed to perform a complete POST while the remaining, secondary processors are directed in the course of their POST to perform a more limited initialization sequence. At power on, the primary processor begins a normal POST, while the secondary processors are held until a vector is placed into a redirection vector location. Each secondary processor is then subsequently started, using its own initialization code located at the address indicated by the redirection vector. The first technique is applicable to general multiprocessor systems because the implementation of this design can be run either from external software or from an addition to the operating system of the particular machine on which it is being used. The second technique is more specifically oriented to a particular system, and includes the use of an identity register to differentiate between primary and secondary processors.
摘要:
Two design variations which allow multiple processors to start up using a single ROM are disclosed. In each design, a single, primary processor is allowed to perform a complete POST while the remaining, secondary processors are directed in the course of their POST to perform a more limited initialization sequence. At power on, the primary processor begins a normal POST, while the secondary processors are held until a vector is placed into a redirection vector location. Each secondary processor is then subsequently started, using its own initialization code located at the address indicated by the redirection vector. The first technique is applicable to general multiprocessor systems because the implementation of this design can be run either from external software or from an addition to the operating system of the particular machine on which it is being used. The second technique is more specifically oriented to a particular system, and includes the use of an identity register to differentiate between primary and secondary processors.
摘要:
Two design variations which allow multiple processors to start up using a single ROM are disclosed. In each design, a single, primary processor is allowed to perform a complete POST while the remaining, secondary processors are directed in the course of their POST to perform a more limited initialization sequence. At power on, the primary processor begins a normal POST, while the secondary processors are held until a vector is placed into a redirection vector location. Each secondary processor is then subsequently started, using its own initialization code located at the address indicated by the redirection vector. The first technique is applicable to general multiprocessor systems because the implementation of this design can be run either from external software or from an addition to the operating system of the particular machine on which it is being used. The second technique is more specifically oriented to a particular system, and includes the use of an identity register to differentiate between primary and secondary processors.
摘要:
Two design variations which allow multiple processors to start up using a single ROM are disclosed. In each design, a single, primary processor is allowed to perform a complete POST while the remaining, secondary processors are directed in the course of their POST to perform a more limited initialization sequence. At power on, the primary processor begins a normal POST, while the secondary processors are held until a vector is placed into a redirection vector location. Each secondary processor is then subsequently started, using its own initialization code located at the address indicated by the redirection vector. The first technique is applicable to general multiprocessor systems because the implementation of this design can be run either from external software or from an addition to the operating system of the particular machine on which it is being used. The second technique is more specifically oriented to a particular system, and includes the use of an identity register to differentiate between primary and secondary processors.
摘要:
A method and apparatus for arbitrating between multiple processors that can be incorporated into an arbitration scheme that is designed to include only a single processor. The method includes consolidating the individual bus requests of each processor into a single bus request supplied to the single processor arbitration scheme. When control of the bus is allocated to the single processor, the multiprocessor arbitration arbitrates among the processors who requested the bus. The bus protocol used includes a least recently used method for granting bus access to the multiple processors coupled with a means for giving one processor priority over the others for access to the bus. The protocol also includes protection from interruption for the respective processor in control of the bus for a preset period of time.
摘要:
A method and system for independently resetting primary and secondary processors 20 and 120 respectively under program control in a multiprocessor, cache memory system. Processors 20 and 120 are reset without causing cache memory controllers 24 and 124 to reset.
摘要:
A method and system for independently resetting primary and secondary processors 20 and 120 respectively under program control in a multiprocessor, cache memory system. Processors 20 and 120 are reset without causing cache memory controllers 24 and 124 to reset.
摘要:
A processor-based system includes a processing unit. The processing unit includes at least a processor and preferably also a cache memory, a cache memory controller and a numerical coprocessor. The processing unit is reset in response to a system reset signal being asserted at a reset input node and only selected portions of the processing unit are reset in response to a partial-reset signal being asserted at a partial-reset input node. The system can also include a number of other components such as video circuitry, a hard disk drive, bus interface circuitry, a speaker, a keyboard controller and a keyboard.
摘要:
A method and system for independently resetting primary and secondary processors 20 and 120 respectively under program control in a multiprocessor, cache memory system. Processors 20 and 120 are reset without causing cache memory controllers 24 and 124 to reset.