摘要:
The present method invention provides a portable method useful for identifying the effect pigments used in developing a color matched formula for a vehicle repair paint. The method comprises observation of effect pigment properties of the coating of a vehicle to be matched, in a field location with a portable magnification apparatus, and comparison of the effect pigment properties with reference sample(s) properties of available effect pigments, thus enabling precise selection of effect pigment(s). The method may also utilize features derived from images of physical reference samples of available effect pigments, for comparison purposes. Further, the method may, in a field or centralized laboratory location, utilize a comparison of the effect pigment properties of images of the vehicle coating to be matched, or features derived from images thereof, with images of reference samples of available effect pigments, or features derived from images thereof, thus enabling precise selection the effect pigment or pigments to use in the development of said color matched formula.
摘要:
The present invention relates to a method and apparatus for predicting the non-color properties of a chemical mixture, such as an automotive paint, using an artificial neural network. The neural network includes an input layer having nodes for receiving input data related to the chemical components of the mixture and environmental and process conditions that can affect the properties of the mixture. An output layer having nodes generate output data which predict the properties of the chemical mixture as a result of variation of the input data. A hidden layer having nodes is connected to the nodes in the input and output layers. Weighted connections connect the nodes of the input, hidden and output layers and threshold weights are applied to the hidden and output layer nodes. The connection and threshold weights have values to calculate the relationship between input data and output data. The data to the input layer and the data to the output layer are interrelated through the neural network's nonlinear relationship. When implemented, accurate predictions of the final properties of the mixture can be obtained. The invention is especially useful in relating automotive paint formulation variables (e.g., paint ingredient amounts and application process conditions) to physical properties (e.g., viscosity, sag), appearance (e.g., hiding, gloss, distinctness of image) or other measured properties enabling comparison of formula properties to target values or tolerances without expensive experimental work.
摘要:
The present invention relates to a method and apparatus for predicting the non-color properties of a chemical mixture, such as an automotive paint, using an artificial neural network. The neural network includes an input layer having nodes for receiving input data related to the chemical components of the mixture and environmental and process conditions that can affect the properties of the mixture. An output layer having nodes generate output data which predict the properties of the chemical mixture as a result of variation of the input data. A hidden layer having nodes is connected to the nodes in the input and output layers. Weighted connections connect the nodes of the input, hidden and output layers and threshold weights are applied to the hidden and output layer nodes. The connection and threshold weights have values to calculate the relationship between input data and output data. The data to the input layer and the data to the output layer are interrelated through the neural network's nonlinear relationship. When implemented, accurate predictions of the final properties of the mixture can be obtained. The invention is especially useful in relating automotive paint formulation variables (e.g., paint ingredient amounts and application process conditions) to physical properties (e.g., viscosity, sag), appearance (e.g., hiding, gloss, distinctness of image) or other measured properties enabling comparison of formula properties to target values or tolerances without expensive experimental work.
摘要:
A process for refinishing or repainting a damaged paint area of a vehicle or part thereof using a computer-implemented method to determine a refinish paint formula that can be matched to the color of the original paint; in this process: a) the color data values of the original paint to be matched are determined; b) the color data values are entered into a computer containing a color cluster data base and color clusters each having a centroid and a refinish paint formula associated with each centroid; c) the color data values of the original paint are positioned in a color cluster via computer implementation and a refinish paint associated with the centroid of the color cluster having color characteristics close to the color characteristics of the original paint is obtained; and d) spray applying the refinish paint of step c) to the damaged paint area using conventional techniques thereby matching the color characteristics of the refinish paint to the undamaged original paint of the vehicle.
摘要:
One or more embodiments relates to a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650° C. The 9 Cr-1 Mo steel has a tempered martensite microstructure and is comprised of both large (0.5-3 μm) primary titanium carbides and small (5-50 nm) secondary titanium carbides in a ratio of. from about 1:1.5 to about 1.5:1. The 9 Cr-1 Mo steel may be fabricated using exemplary austenizing, rapid cooling, and tempering steps without subsequent hot working requirements. The 9 Cr-1 Mo steel exhibits improvements in total mass gain, yield strength, and time-to-rupture over ASTM P91 and ASTM P92 at the temperature and time conditions examined.
摘要:
The invention relates to a composition and heat treatment for a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650° C. The novel combination of composition and heat treatment produces a heat treated material containing both large primary titanium carbides and small secondary titanium carbides. The primary titanium carbides contribute to creep strength while the secondary titanium carbides act to maintain a higher level of chromium in the finished steel for increased oxidation resistance, and strengthen the steel by impeding the movement of dislocations through the crystal structure. The heat treated material provides improved performance at comparable cost to commonly used high-temperature steels such as ASTM P91 and ASTM P92, and requires heat treatment consisting solely of austenization, rapid cooling, tempering, and final cooling, avoiding the need for any hot-working in the austenite temperature range.