摘要:
A process and apparatus are provided for cooling gaseous effluent from a hydrocarbon pyrolysis furnace, the cooling conduit apparatus comprising: (i) an inner wall for contacting the effluent, the inner wall defining a bore extending a length of the cooling conduit, the inner wall including a perimeter opening along the bore; (ii) an outer wall external to the inner wall and substantially coaxial to the inner wall; (iii) a substantially annular cavity external to the inner wall and including at least a portion of the outer wall, the annular cavity fluidly and remotely connected to the perimeter opening, the annular cavity externally surrounding a perimeter of the inner wall, the annular cavity including at least a portion of the outer wall; and (iv) a peripheral channel extending around a perimeter of the inner wall, the peripheral channel providing a channel flow path that fluidly connects the annular cavity with the remotely connected perimeter opening along the perimeter of the inner wall.
摘要:
A process and apparatus are provided for cooling gaseous effluent from a hydrocarbon pyrolysis furnace, the cooling conduit apparatus comprising: (i) an inner wall for contacting the effluent, the inner wall defining a bore extending a length of the cooling conduit, the inner wall including a perimeter opening along the bore; (ii) an outer wall external to the inner wall and substantially coaxial to the inner wall; (iii) a substantially annular cavity external to the inner wall and including at least a portion of the outer wall, the annular cavity fluidly and remotely connected to the perimeter opening, the annular cavity externally surrounding a perimeter of the inner wall, the annular cavity including at least a portion of the outer wall; and (iv) a peripheral channel extending around a perimeter of the inner wall, the peripheral channel providing a channel flow path that fluidly connects the annular cavity with the remotely connected perimeter opening along the perimeter of the inner wall.
摘要:
A process and apparatus are provided for cooling gaseous effluent from a hydrocarbon pyrolysis furnace, the cooling conduit apparatus including: (i) an inner wall for contacting the effluent, the inner wall defining a bore extending a length of the cooling conduit, the inner wall including a perimeter opening along the bore; (ii) an outer wall external to the inner wall and substantially coaxial to the inner wall; (iii) a substantially annular cavity external to the inner wall and including at least a portion of the outer wall, the annular cavity fluidly and remotely connected to the perimeter opening, the annular cavity externally surrounding a perimeter of the inner wall, the annular cavity including at least a portion of the outer wall; and (iv) a peripheral channel extending around a perimeter of the inner wall, the peripheral channel providing a channel flow path that fluidly connects the annular cavity with the remotely connected perimeter opening along the perimeter of the inner wall.
摘要:
A process and apparatus are provided for cooling gaseous effluent from a hydrocarbon pyrolysis furnace, the cooling conduit apparatus comprising: (i) an inner wall for contacting the effluent, the inner wall defining a bore extending a length of the cooling conduit, the inner wall including a perimeter opening along the bore; (ii) an outer wall external to the inner wall and substantially coaxial to the inner wall; (iii) a substantially annular cavity external to the inner wall and including at least a portion of the outer wall, the annular cavity fluidly and remotely connected to the perimeter opening, the annular cavity externally surrounding a perimeter of the inner wall, the annular cavity including at least a portion of the outer wall; and (iv) a peripheral channel extending around a perimeter of the inner wall, the peripheral channel providing a channel flow path that fluidly connects the annular cavity with the remotely connected perimeter opening along the perimeter of the inner wall.
摘要:
The present disclosure provides a process for treating a hydrocarbon feedstock comprising: (a) feeding the hydrocarbon feedstock at a linear velocity equal to or less than 0.9 m/s to a first preheating zone in the convection section of a steam cracking furnace; (b) preheating the hydrocarbon feedstock in the first preheating zone to vaporize less than 99 wt. % of the hydrocarbon feedstock to form a vapor-liquid mixture; (c) separating at least a portion of the vapor-liquid mixture to form a vapor fraction and a liquid fraction; and (d) feeding at least a portion of the vapor fraction to the steam cracking furnace.
摘要:
A process for cracking a heavy hydrocarbon feedstock containing non-volatile components and/or coke precursors, wherein a stripping agent is added to the feedstock to form an enhanced hydrocarbon blend which is thereafter separated into a vapor phase and a liquid phase by flashing in a flash/separation vessel, separating and cracking the vapor phase, and recovering cracked product. The stripping agent increases vaporization of the volatile fraction of the heavy hydrocarbon increasing the maximum feedrate capacity of the furnace.
摘要:
A method and system are disclosed for co-production of olefins and electric power. The method includes determining a separation level, separating a hydrocarbon feed into a light fraction stream and a heavy fraction stream based on the determined separation level; generating electric power from the heavy fraction stream; and cracking the light fraction stream in a pyrolysis unit to produce an effluent comprising olefins. The separation level may be based on olefin production requirements and electric power requirements or specific split of the hydrocarbon feed to be utilized for power generation and olefin production.
摘要:
In a system for thermal cracking gaseous feedstocks, the system including a gas cracker for producing an effluent comprising olefins, at least one transfer line exchanger for the recovery of process energy from the effluent and a water quench tower system, a process for extending the range of system feedstocks to include liquid feedstocks that yield tar is provided. The process includes the steps of injecting a first quench fluid downstream of the at least one transfer line exchanger to quench the process effluent comprising olefins, separating in a separation vessel a cracked product and a first byproduct stream comprising tar from the quenched effluent, directing the separated cracked product to the water quench tower system and quenching the separated cracked product with a second quench fluid to produce a cracked gas effluent for recovery and a second byproduct stream comprising tar. An apparatus for cracking a liquid hydrocarbon feedstock that yield tar is also provided.
摘要:
A process sequence for treating cracked gases of heavy feedstocks which preferentially produces propylene to the exclusion of propane, butanes and butenes. The process eliminates the need for a depropanizer with the attendant savings in capital and operating costs. In lieu of a conventional C3 splitter, the process features a depropylenizer, i.e. a distillation tower designed to separate propylene from propane, butanes and butenes. A hydrogenation unit to eliminate contaminants can be placed upstream of the depropylenizer or the depropylenizer can be split into two sections with the hydrogenation unit located between the two sections.
摘要:
The process relates to the use of any naphtha-range stream containing a portion of C8+ aromatics combined with benzene, toluene, and other non-aromatics in the same boiling range to produce toluene. By feeding the A8+ containing stream to a dealkylation/transalkylation/cracking reactor to increase the concentration of toluene in the stream, a more suitable feedstock for the methylation reaction can be produced. This stream can be obtained from a variety of sources, including the pygas stream from a steam cracker, “cat naphtha” from a fluid catalytic cracker, or the heavier portion of reformate.