摘要:
An apparatus comprises a cardiac signal sensing circuit configured to sense an electrical cardiac signal from at least one of an atrium or ventricle of a heart of a subject, a therapy circuit configured to provide electrical pacing therapy and electrical autonomic neural modulation therapy to the subject, and a control circuit. The control circuit is configured to initiate delivery of the autonomic modulation neural therapy, and the control circuit includes a signal detection circuit configured to detect delivery of the autonomic neural modulation therapy in the sensed cardiac signal. The control circuit is configured to change, in response to detecting the delivery, a sensitivity of the cardiac signal sensing circuit during delivery of the autonomic neural modulation therapy.
摘要:
A neurostimulation system senses a signal indicative of a patient's physical state such as posture and/or activity level. In various embodiments, a stored value for each of stimulation parameters controlling delivery of neurostimulation is selected according to the patient's physical state. In various embodiments, values of the stimulation parameters are approximately optimized for each of a number of different physical states, and are stored for later selection.
摘要:
A neurostimulation system senses a signal indicative of a patient's physical state such as posture and/or activity level. In various embodiments, a stored value for each of stimulation parameters controlling delivery of neurostimulation is selected according to the patient's physical state. In various embodiments, values of the stimulation parameters are approximately optimized for each of a number of different physical states, and are stored for later selection.
摘要:
A neurostimulation system senses a signal indicative of a patient's physical state such as posture and/or activity level. In various embodiments, a stored value for each of stimulation parameters controlling delivery of neurostimulation is selected according to the patient's physical state. In various embodiments, values of the stimulation parameters are approximately optimized for each of a number of different physical states, and are stored for later selection.
摘要:
A method and device can include a Hall effect sensor, which can be formed as a portion of an integrated circuit of an implantable device and which can produce a non-linear current path such as to permit detecting a magnetic field parallel with the orientation of the Hall effect sensor of the implantable device.
摘要:
An apparatus includes a cardioversion or defibrillation therapy energy source coupled to a bridge circuit. The bridge circuit includes a first switch for connection to a first implantable electrode, a second switch for connection to a second implantable electrode, a third switch coupled for connection to the first implantable electrode, and a fourth switch coupled for connection to the second implantable electrode. The first and second switches are formed on a shared first IC, the third and fourth switches are formed on a shared second IC, and the second IC is stacked substantially superjacent to the first IC such that a cathode of the first switch is coupled to an anode of the third switch and a cathode of the second switch is coupled to an anode of the fourth switch.
摘要:
An apparatus includes a cardioversion or defibrillation therapy energy source coupled to a bridge circuit. The bridge circuit includes a first switch for connection to a first implantable electrode, a second switch for connection to a second implantable electrode, a third switch coupled for connection to the first implantable electrode, and a fourth switch coupled for connection to the second implantable electrode. The first and second switches are formed on a shared first IC, the third and fourth switches are formed on a shared second IC, and the second IC is stacked substantially superjacent to the first IC such that a cathode of the first switch is coupled to an anode of the third switch and a cathode of the second switch is coupled to an anode of the fourth switch.
摘要:
A piezoelectric element within an external ultrasonic transducer assembly can be used for wireless communication of data between an implantable device and the external ultrasonic transducer assembly such as using ultrasonic energy coupled to a flexible portion of a housing of the transducer assembly. The flexible portion can be configured to contact skin of a body containing the implantable device. The transducer assembly can be configured to respectively transmit or receive ultrasonic energy using at least partially overlapping respective ranges of resonant frequencies.
摘要:
An embodiment of a system for gathering physiologic data related to a human body includes a sensor device implanted in the human body, an inductive coil communicably coupled to the implanted sensor device; and a manager device in communication with the implanted sensor device via the inductive coil. The coil may be wrapped around the sensor device or attached to the sensor device fixation. An embodiment of a method for gathering physiologic data related to a physiologic parameter in a human body includes communicably coupling an inductive coil to communication circuitry of an implantable medical device (IMD), deploying the inductive coil and the IMD into a vessel of the human body, and inducing current in the inductive coil via the communication circuitry, the current representative of data associated with the IMD.
摘要:
A piezoelectric element within an external ultrasonic transducer assembly can be used for wireless communication of data between an implantable device and the external ultrasonic transducer assembly such as using ultrasonic energy coupled to a flexible portion of a housing of the transducer assembly. The flexible portion can be configured to contact skin of a body containing the implantable device. The transducer assembly can be configured to respectively transmit or receive ultrasonic energy using at least partially overlapping respective ranges of resonant frequencies.