Continuous Methods for Treating Liquids and Manufacturing Certain Constituents (e.g., Nanoparticles) in Liquids, Apparatuses and Nanoparticles and Nanoparticle/Liquid Solution(s) Resulting Therefrom
    3.
    发明申请
    Continuous Methods for Treating Liquids and Manufacturing Certain Constituents (e.g., Nanoparticles) in Liquids, Apparatuses and Nanoparticles and Nanoparticle/Liquid Solution(s) Resulting Therefrom 有权
    用于处理液体和在液体,装置和纳米颗粒中制造某些成分(例如纳米颗粒)的连续方法和由此产生的纳米颗粒/液体溶液

    公开(公告)号:US20150093453A1

    公开(公告)日:2015-04-02

    申请号:US14081725

    申请日:2013-11-15

    IPC分类号: A01N59/16 A01N59/00 B01J19/08

    摘要: This invention relates generally to novel methods and novel devices for the continuous manufacture of nanoparticles, microparticles and nanoparticle/liquid solution(s). The nanoparticles (and/or micron-sized particles) comprise a variety of possible compositions, sizes and shapes. The particles (e.g., nanoparticles) are caused to be present (e.g., created) in a liquid (e.g., water) by, for example, preferably utilizing at least one adjustable plasma (e.g., created by at least one AC and/or DC power source), which plasma communicates with at least a portion of a surface of the liquid. At least one subsequent and/or substantially simultaneous adjustable electrochemical processing technique is also preferred. Multiple adjustable plasmas and/or adjustable electrochemical processing techniques are preferred. The continuous process causes at least one liquid to flow into, through and out of at least one trough member, such liquid being processed, conditioned and/or effected in said trough member(s). Results include constituents formed in the liquid including micron-sized particles and/or nanoparticles (e.g., metallic-based nanoparticles) of novel size, shape, composition and properties present in a liquid.

    摘要翻译: 本发明一般涉及用于连续制造纳米颗粒,微粒和纳米颗粒/液体溶液的新颖方法和新型装置。 纳米颗粒(和/或微米尺寸的颗粒)包含各种可能的组合物,尺寸和形状。 通过例如优选利用至少一个可调节的等离子体(例如,由至少一个AC和/或DC产生的)使颗粒(例如,纳米颗粒)存在(例如,产生)在液体(例如水)中 电源),其等离子体与液体的至少一部分表面连通。 至少一个后续和/或基本上同时可调节的电化学处理技术也是优选的。 多重可调等离子体和/或可调电化学处理技术是优选的。 连续过程使至少一种液体流入,通过和流出至少一个槽构件,这种液体在所述槽构件中被处理,调节和/或实现。 结果包括在液体中形成的包括在液体中存在的新颖尺寸,形状,组成和性质的微米级颗粒和/或纳米颗粒(例如金属基纳米颗粒)形成的组分。