摘要:
Methods and devices for the continuous manufacture of nanop∈rticles, microparticles and nanoparticle/liquid solution(s) are disclosed. The nanoparticles (and/or micron-sized particles) comprise a variety of possible compositions, sizes and shapes. The particles (e.g., nanoparticles) are caused to be present (e. g., created) in a liquid (e.g., water) by utilizing at least one adjustable plasma (e.g., created by at least one AC and/or DC power source), which plasma communicates with at least a portion of a surface of the liquid. The continuous process causes at least one liquid to flow into, through and out of at least one trough member, such liquid being processed, conditioned and/or effected in said trough member(s).
摘要:
This invention relates generally to novel methods and novel devices for the continuous manufacture of nanoparticles, microparticles and nanoparticle/liquid solution(s). The nanoparticles (and/or micron-sized particles) comprise a variety of possible compositions, sizes and shapes. The particles (e.g., nanoparticles) are caused to be present (e.g., created) in a liquid (e.g., water) by, for example, preferably utilizing at least one adjustable plasma (e.g., created by at least one AC and/or DC power source), which plasma communicates with at least a portion of a surface of the liquid. At least one subsequent and/or substantially simultaneous adjustable electrochemical processing technique is also preferred. Multiple adjustable plasmas and/or adjustable electrochemical processing techniques are preferred. The continuous process causes at least one liquid to flow into, through and out of at least one trough member, such liquid being processed, conditioned and/or effected in said trough member(s). Results include constituents formed in the liquid including micron-sized particles and/or nanoparticles (e.g., metallic-based nanoparticles) of novel size, shape, composition and properties present in a liquid.
摘要:
This invention relates generally to novel methods and novel devices for the continuous manufacture of nanoparticles, microparticles and nanoparticle/liquid solution(s). The nanoparticles (and/or micron-sized particles) comprise a variety of possible compositions, sizes and shapes. The particles (e.g., nanoparticles) are caused to be present (e.g., created) in a liquid (e.g., water) by, for example, preferably utilizing at least one adjustable plasma (e.g., created by at least one AC and/or DC power source), which plasma communicates with at least a portion of a surface of the liquid. At least one subsequent and/or substantially simultaneous adjustable electrochemical processing technique is also preferred. Multiple adjustable plasmas and/or adjustable electrochemical processing techniques are preferred. The continuous process causes at least one liquid to flow into, through and out of at least one trough member, such liquid being processed, conditioned and/or effected in said trough member(s). Results include constituents formed in the liquid including micron-sized particles and/or nanoparticles (e.g., metallic-based nanoparticles) of novel size, shape, composition and properties present in a liquid.
摘要:
Methods and devices for the continuous manufacture of nanop∈rticles, microparticles and nanoparticle/liquid solution(s) are disclosed. The nanoparticles (and/or micron-sized particles) comprise a variety of possible compositions, sizes and shapes. The particles (e.g., nanoparticles) are caused to be present (e. g., created) in a liquid (e.g., water) by utilizing at least one adjustable plasma (e.g., created by at least one AC and/or DC power source), which plasma communicates with at least a portion of a surface of the liquid. The continuous process causes at least one liquid to flow into, through and out of at least one trough member, such liquid being processed, conditioned and/or effected in said trough member(s).