摘要:
A method for forming a semiconductor device may include forming a silicon oxynitride mask layer over a first layer. The first layer may be etched using the silicon oxynitride mask layer, to form a pattern in the first layer. The pattern may be filled with a dielectric material. The dielectric material may be planarized using a ceria-based slurry and using the silicon oxynitride mask layer as a stop layer.
摘要:
A method of planarizing a semiconductor device is provided. The semiconductor device includes a substrate, first and second components provided on the surface of the substrate, and a first material provided between and above the first and second components. The first component has a height greater than a height of the second component. The method includes performing a first polishing step on the semiconductor device to remove the first material above a top surface of the first component, to remove the first material above a top surface of the second component, and to level the top surface of the first component. The method also includes performing a second polishing step on the semiconductor device to planarize the top surfaces of the first and second components.
摘要:
A method of planarizing a semiconductor device is provided. The semiconductor device includes a substrate, first and second components provided on the surface of the substrate, and a first material provided between and above the first and second components. The first component has a height greater than a height of the second component. The method includes performing a first polishing step on the semiconductor device to remove the first material above a top surface of the first component, to remove the first material above a top surface of the second component, and to level the top surface of the first component. The method also includes performing a second polishing step on the semiconductor device to planarize the top surfaces of the first and second components.
摘要:
A method of planarizing a semiconductor device is provided. The semiconductor device includes a substrate, first and second components provided on the surface of the substrate, and a first material provided between and above the first and second components. The first component has a height greater than a height of the second component. The method includes performing a first polishing step on the semiconductor device to remove the first material above a top surface of the first component, to remove the first material above a top surface of the second component, and to level the top surface of the first component. The method also includes performing a second polishing step on the semiconductor device to planarize the top surfaces of the first and second components.
摘要:
In fabricating an electronic structure, a substrate is provided, and a first barrier layer is provided on the substrate. A germanium thin film diode is provided on the first barrier layer, and a second barrier layer is provided on the germanium thin film diode. A memory device is provided over and connected to the second barrier layer.
摘要:
Methods of analyzing a plurality of facial expressions are disclosed that include: identifying a subject person, utilizing the subject person to create an image of a known target, removing at least one distracter expression from the target image to form a revised target image, and reviewing the revised target image with at least one third party participant to form a final target image. Additional methods of analyzing a plurality of facial expressions include: identifying a subject person, utilizing the subject person to create an image of a known target, digitizing the target image, removing at least one distracter expression from the target image to transform the target image to a revised target image, and reviewing the revised target image with at least one third party participant to transform the revised target image to a final target image. Software for implementing contemplated methods include: a set speed function, a pre-test phase function, an instruction phase function, a practice phase function, and a post-test phase function.
摘要:
An automated laboratory device that comprises a mechanism that performs operations on laboratory samples, a scheduler that causes the mechanism to process laboratory samples in accordance with programmed processes, logic that detects an error occurring in a process controlled by the scheduler, logic that accepts a user-defined error handling routine for the error, and logic that executes the error handling routine when the error is encountered. Also described is an embodiment of the invention directed to a laboratory automation system, a method of laboratory automation, a computer implemented software program product, a method of doing business, and a laboratory automation network.
摘要:
An automated laboratory device that comprises a mechanism that performs operations on laboratory samples, a scheduler that causes the mechanism to process laboratory samples in accordance with programmed processes, logic that detects an error occurring in a process controlled by the scheduler, logic that accepts a user-defined error handling routine for the error, and logic that executes the error handling routine when the error is encountered. Also described is an embodiment of the invention directed to a laboratory automation system, a method of laboratory automation, a computer implemented software program product, a method of doing business, and a laboratory automation network.
摘要:
A method for fabricating a memory device with a self-aligned trap layer and rounded active region corners is disclosed. In the present invention, an STI process is performed before any of the charge-trapping and top-level layers are formed. Immediately after the STI process, the sharp corners of the active regions are exposed. Because these sharp corners are exposed at this time, they are available to be rounded through any number of known rounding techniques. Rounding the corners improves the performance characteristics of the memory device. Subsequent to the rounding process, the charge-trapping structure and other layers can be formed by a self-aligned process.
摘要:
Methods of analyzing a plurality of facial expressions are disclosed that include: identifying a subject person, utilizing the subject person to create an image of a known target, removing at least one distracter expression from the target image to form a revised target image, and reviewing the revised target image with at least one third party participant to form a final target image. Additional methods of analyzing a plurality of facial expressions include: identifying a subject person, utilizing the subject person to create an image of a known target, digitizing the target image, removing at least one distracter expression from the target image to transform the target image to a revised target image, and reviewing the revised target image with at least one third party participant to transform the revised target image to a final target image. Software for implementing contemplated methods include: a set speed function, a pre-test phase function, an instruction phase function, a practice phase function, and a post-test phase function.