摘要:
The present invention is directed to material removal instrument for forming cavities in interior body regions, particularly cavities in intervertebral discs and vertebrae. The instrument includes a cannula and a rotation mechanism disposed at least partially within the cannula. A cutting element extends from the rotation mechanism and impacts and dislocates tissue as the rotation mechanism is rotated within the body. Dislocated tissue with withdrawn from the body via the cannula.
摘要:
This invention relates generally to an instrumentation and implant system providing minimally invasive vertebral augmentation. The apparatus including an expandable membrane sized and configured to be located within a cavity in a patient's bone and having an interior volume for receiving bone filler material; a delivery cannula in communication with the membrane for providing bone filler material to the membrane; and an evacuation cannula in fluid communication with the membrane for receiving a portion of the provided bone filler material from the membrane.
摘要:
A trial implant system including a trial implant configured to be temporarily inserted into an intervertebral space defined by a superior vertebral body and an inferior vertebral body is disclosed. The trial implant may include a superior plate and an inferior plate coupled to the superior plate. The superior plate may have a first mating portion that defines a first articulating interface and the inferior plate may have a second mating portion that defines a second articulating interface. The second articulating interface may be configured to interact with the first articulating interface of the superior plate such that at least one of the superior plate and the inferior plate is capable of movement relative to the other. The first and second articulating interfaces may be primary or auxiliary articulating interfaces. For example, the first and second articulating interfaces may be corresponding curved surfaces or they may be corresponding engagement features.
摘要:
A hybrid spinal implant device, and method of making the same are disclosed. The spinal implant device comprises two facing endplates, each having at least one anchoring wall or pin element, and a plastic spacer anchored to and located between the two endplates. The endplates may be manufactured from titanium. The plastic spacer may be manufactured from a radiolucent, and bio-compatible polymer-based material including polyetheretherketone (“PEEK”), polyetherketone, polyetherketoneketone, and/or fiber reinforced plastic. The endplates made of titanium allow for enhanced bone growth, while the plastic/PEEK spacer element allows for improved load absorption and distribution. The spinal implant device, using titanium endplates and a PEEK spacer, provides excellent radiolucency thereby eliminating the need for X-ray markers either intra- or post-operation. The manufacturing method for the hybrid spinal implant device uses injection molding to insert or back injection mold the spacer between the two endplates.
摘要:
The present invention is directed to material removal instrument for forming cavities in interior body regions, particularly cavities in intervertebral discs and vertebrae. The instrument includes a cannula and a rotation mechanism disposed at least partially within the cannula. A cutting element extends from the rotation mechanism and impacts and dislocates tissue as the rotation mechanism is rotated within the body. Dislocated tissue with withdrawn from the body via the cannula.
摘要:
This invention relates generally to an instrumentation and implant system providing minimally invasive vertebral augmentation. The apparatus including an expandable membrane sized and configured to be located within a cavity in a patient's bone and having an interior volume for receiving bone filler material; a delivery cannula in communication with the membrane for providing bone filler material to the membrane; and an evacuation cannula in fluid communication with the membrane for receiving a portion of the provided bone filler material from the membrane.
摘要:
The present invention is directed to material removal instrument for forming cavities in interior body regions, particularly cavities in intervertebral discs and vertebrae. The instrument includes a cannula and a rotation mechanism disposed at least partially within the cannula. A cutting element extends from the rotation mechanism and impacts and dislocates tissue as the rotation mechanism is rotated within the body. Dislocated tissue with withdrawn from the body via the cannula.
摘要:
A discectomy tool comprising: a) a cannula having an outer surface having a longitudinal bore therein, a proximal end and a distal end; b) a steering wire disposed in the longitudinal bore; c) a flexible, hollow transmission shaft disposed in the cannula, the shaft having a throughbore, a proximal end portion, a distal end portion and an outer surface having a thread extending therefrom; d) an irrigation source fluidly connected to the throughbore; e) a cutting tip attached to the distal end portion of the transmission shaft.
摘要:
The present invention is directed to material removal instrument for forming cavities in interior body regions, particularly cavities in intervertebral discs and vertebrae. The instrument includes a cannula and a rotation mechanism disposed at least partially within the cannula. A cutting element extends from the rotation mechanism and impacts and dislocates tissue as the rotation mechanism is rotated within the body. Dislocated tissue with withdrawn from the body via the cannula.
摘要:
A hybrid spinal implant device, and method of making the same are disclosed. The spinal implant device comprises two facing endplates, each having at least one anchoring wall or pin element, and a plastic spacer anchored to and located between the two endplates. The endplates may be manufactured from titanium. The plastic spacer may be manufactured from a radiolucent, and bio-compatible polymer-based material including polyetheretherketone (“PEEK”), polyetherketone, polyetherketoneketone, and/or fiber reinforced plastic. The endplates made of titanium allow for enhanced bone growth, while the plastic/PEEK spacer element allows for improved load absorption and distribution. The spinal implant device, using titanium endplates and a PEEK spacer, provides excellent radiolucency thereby eliminating the need for X-ray markers either intra- or post-operation. The manufacturing method for the hybrid spinal implant device uses injection molding to insert or back injection mold the spacer between the two endplates.