摘要:
A method of fluid placement in a hydraulic fracture created in a subterranean formation penetrated by a wellbore that comprises the use of one or more reactants that form a low friction layer between the fluids that penetrate the fracture in consecutive treatment stages. Reactants can be added to the fluid that is the carrier or other fluid to be placed in a specific region of the fracture, namely as an upper or lower boundary of the fracture, or added to both the stage that requires placement in a specific section of the fracture and in the stage preceding it, especially the pad and carrier fluids used in consecutive stages.
摘要:
A method of fluid placement in a hydraulic fracture created in a subterranean formation penetrated by a wellbore that comprises the use of one or more reactants that form a low friction layer between the fluids that penetrate the fracture in consecutive treatment stages. Reactants can be added to the fluid that is the carrier or other fluid to be placed in a specific region of the fracture, namely as an upper or lower boundary of the fracture, or added to both the stage that requires placement in a specific section of the fracture and in the stage preceding it, especially the pad and carrier fluids used in consecutive stages.
摘要:
Some embodiments relate to oil and gas production, more specifically, to methods of controlling the condition of suspensions and fluids, small particle delivery and formation rock quality through controlled changes in the physical properties of a hydrolysable polymer contained in a treatment fluid.
摘要:
A method of heterogeneous proppant placement in a subterranean fracture is disclosed. The method comprises injecting well treatment fluid including proppant (16) and proppant-spacing filler material called a channelant (18) through a wellbore (10) into the fracture (20), heterogeneously placing the proppant in the fracture in a plurality of proppant clusters or islands (22) spaced apart by the channelant (24), and removing the channelant filler material (24) to form open channels (26) around the pillars (28) for fluid flow from the formation (14) through the fracture (20) toward the wellbore (10). The proppant and channelant can be segregated within the well treatment fluid, or segregated during placement in the fracture. The channelant can be dissolvable particles, initially acting as a filler material during placement of the proppant in the fracture, and later dissolving to leave the flow channels between the proppant pillars. The well treatment fluid can include fibers to provide reinforcement and consolidation of the proppant and, additionally or alternatively, to inhibit settling of the proppant in the treatment fluid.
摘要:
Recovery of hydrocarbon fluid from low permeability sources enhanced by introduction of a treating fluid is described. The treating fluid may include one or more constituent ingredients designed to cause displacement of hydrocarbon via imbibition. The constituent ingredients may be determined based on estimates of formation wettability. Further, contact angle may be used to determine wettability. Types and concentrations of constituent ingredients such as surfactants may be determined for achieving the enhanced recovery of hydrocarbons. The selection can be based on imbibition testing on material that has been disaggregated from the source formation.
摘要:
The present invention related to a method for fracturing subterranean formations including the steps of (a) providing a water source; (b) adding a crosslinking agent to said water source; (c) adding a polymeric component to said water to create a fracturing fluid; (d) pumping said fracturing fluid into said formation. The fluid may contain an acrylamide-acrylate copolymer and any suitable number of additives. The additives are preferably combined with the water source to form an additive stream, to which the polymer is later added.
摘要:
A method is given for treating a wellbore in a subterranean formation by hydraulic fracturing, slickwater fracturing, gravel packing, and the like, by using plate-like materials as some or all of the proppant or gravel. The plate-like materials are particularly useful in complex fracture systems, for example in shales. They may be used as from about 20 to about 100% of the proppant. Relative to conventional proppants, plate-like proppants demonstrate (a) enhanced crush resistance of the proppant due to better stress distribution among proppant particles, (b) diminished proppant embedment into formation fracture faces due to the greater contact surface area of proppant particles with the formation, (c) better proppant transport due to lower proppant settling rates, (d) deeper penetration into branched and fine fracture networks, and (e) enhanced proppant flowback control. Preferred plate-like proppants are layered rocks and minerals; most preferred is mica.
摘要:
A method for determining a characteristic of an underground formation with a fluid is described. The method includes providing a sample material of the underground formation; measuring the permeability and the porosity of the sample material; performing a drainage test on the sample material using the fluid; estimating the threshold pressure of the sample material from the drainage test, the permeability and the porosity measurements; and determining the receding contact angle of the fluid on the sample material from the threshold pressure. The sample material can be disaggregated material.
摘要:
A method for preparing a formation surrounding a wellbore to bear hydrocarbons through a borehole is disclosed. In one step, a bottomhole assembly is inserted into the borehole. The formation is drilled with the bottomhole assembly. The formation may be characterized with logging tools, probes, sensors, seismic system and/or the like to create first information. One or more fractures are placed in the formation without removal of the bottomhole assembly from the wellbore. Further, continuous drilling of the formation is performed with the bottomhole assembly after/during placing the fractures. Further characterizing of the formation with the probes, sensors/systems or the like is performed to produce second information. Another fracture is placed with feedback from the second information. Repeating the drilling, characterizing and placing of fractures as necessary during the formation preparing process.
摘要:
A method is given for creating a fracture, in a subterranean formation, that has a fluid flow barrier at the top, at the bottom, or at both the top and the bottom. The method is applied before or during a conventional hydraulic fracturing treatment and is used to limit undesired vertical growth of a fracture out of the productive zone. A lower-viscosity pad fluid is used to initiate the fracture; a higher-viscosity fluid containing barrier particles is then injected; a lower-viscosity particle-free fluid is then injected to promote settling (or rising) of the barrier particles and to finger through the slug of barrier particles and cut it into an upper and lower portion. If the barrier is to be at the bottom of the fracture, the barrier particles are denser than the fluids; if the barrier is to be at the top of the fracture, the barrier particles are less dense than the fluids. Optionally, between the barrier transport stage and the subsequent lower-viscosity stage, there may be a stage of a higher viscosity particle-free fluid that pushes the barrier particles farther into the fracture. To provide both upper and lower particles in one treatment, the pad stage may be of higher-viscosity, or the barrier particles may include particles less dense than, and more dense than, the fluid.