摘要:
Recovery of hydrocarbon fluid from low permeability sources enhanced by introduction of a treating fluid is described. The treating fluid may include one or more constituent ingredients designed to cause displacement of hydrocarbon via imbibition. The constituent ingredients may be determined based on estimates of formation wettability. Further, contact angle may be used to determine wettability. Types and concentrations of constituent ingredients such as surfactants may be determined for achieving the enhanced recovery of hydrocarbons. The selection can be based on imbibition testing on material that has been disaggregated from the source formation.
摘要:
A well treatment fluid composition that comprises a carrier fluid and an amphoteric surfactant, and optionally a viscosifying agent and proppant, is well suited for use in fracturing coal beds to stimulate methane production. The composition preferably is a foam that comprises a gas such as nitrogen or air. Preferably, the surfactant has the formula R—NH2—(CH2)n—C(O)OX wherein R is a saturated or unsaturated alkyl group having from 6-20 carbon atoms, n is from 2-6, and X is hydrogen or a salt forming cation.
摘要:
Methods are provided for increasing the production of hydrocarbons from shaly formations that contain adsorbed condensed hydrocarbon gases by treating such formations with dewatering compositions comprising surfactants that cause the surfaces of the formation to be or to remain oil-wet. The methods may be used in stimulation (acidizing or acid fracturing or hydraulic fracturing), remediation or workover, and in enhancing flow from natural fractures or from unstimulated formations.
摘要:
A method is given for treating a wellbore to increase the production of hydrocarbons from a subterranean formation penetrated by a wellbore, involving a period of injecting into the formation an aqueous injection fluid having a different chemical potential than the aqueous fluid in the formation. If there is water blocking, an osmotic gradient is deliberately created to cause flow of water into the injected fluid; hydrocarbon is then produced by imbibition. If the pore pressure in the water-containing pores in the formation is too low, an osmotic gradient is deliberately created so that water flows from the injected fluid into the water-containing pores, increasing the pore pressure and facilitating hydrocarbon production by imbibition. The method may be repeated cyclically. A semipermeable membrane may be created to enhance the osmosis. Wetting agents may be used to influence imbibition.
摘要:
Recovery of hydrocarbon fluid from low permeability sources is enhanced by introduction of a treating fluid. The treating fluid may include one or more constituent ingredients designed to cause displacement of hydrocarbon via imbibition. The constituent ingredients may be determined based on estimates of formation wettability. Further, contact angle may be used to determine wettability. Types and concentrations of constituent ingredients such as surfactants may be determined for achieving the enhanced recovery of hydrocarbons.
摘要:
The present Invention relates to method to stimulate the production of hydrocarbons from a subterranean formation. In particular, the present Invention discloses and claims methods to enhance the removal of fracturing fluid from a fracture deliberately created in the formation, thereby increasing effective fracture length, and thereby increasing hydrocarbon production. The methods of the present Invention involve breaker schedules opposite conventional teaching—i.e., according to the Invention, the breakers are staged such that the fluid near the fracture tip breaks first creating a viscosity gradient which causes the fluid resident in the tip to move towards the wellbore where it is more easily removed. Preferred embodiments of the Invention involve the use of gas to foam the fluid in the early pumping stages to induce a density gradient, as well as the use of fibrous material in the latter pumping stages to stabilize the proppant pack as the energized fluid in the near-tip squeezes through the near wellbore region.
摘要:
A method for determining a characteristic of an underground formation with a fluid is described. The method includes providing a sample material of the underground formation; measuring the permeability and the porosity of the sample material; performing a drainage test on the sample material using the fluid; estimating the threshold pressure of the sample material from the drainage test, the permeability and the porosity measurements; and determining the receding contact angle of the fluid on the sample material from the threshold pressure. The sample material can be disaggregated material.
摘要:
A well treatment fluid composition that comprises a carrier fluid and an amphoteric surfactant, and optionally a viscosifying agent and proppant, is well suited for use in fracturing coal beds to stimulate methane production. The composition preferably is a foam that comprises a gas such as nitrogen or air. Preferably, the surfactant has the formula R—NH2—(CH2)n—C(O)OX wherein R is a saturated or unsaturated alkyl group having from 6-20 carbon atoms, n is from 2-6, and X is hydrogen or a salt forming cation.
摘要:
The present Invention relates to hydrocarbon well stimulation, and more particularly to methods and compositions to remove (or more generally to transfer) fluid introduced into the subsurface. For instance, preferred methods involve creating then exploiting a capillary pressure gradient at the fracture face to induce fluid flow from the fracture into the formation thereby increasing effective fracture length, and then improving fracture conductivity.
摘要:
A method of determining wettability of a rock sample, such as from a core sample is described. The sample is preferably crushed or comminuted to a particulate size where micro fractures have been eliminated, but where the particles are still large enough to represent the native rock matrix and texture. The comminuted core sample is exposed to a test fluid for a given period of time. The rock sample can be split into many separate aliquots, and a series of tests is performed using a series of different fluids and/or the same fluid for different exposure times. The excess test fluid residing on the surfaces of sample particles is removed. The test fluid imbibed into the interior of the particulate sample is then measured. The test fluid can be, for example, water, a non-aqueous fluid, and/or a solution of miscible solvents. The technique used to measure the imbibed fluid depends on the solvent (imbibing fluid) being studied. In one example, this technique includes both gravimetric determination and quantitative chemical analysis. The detection of water can be via Karl Fischer titration.