摘要:
The present invention relates to a system for identifying regions of interest in visual imagery. The system is configured to receive a series of consecutive frames representing a scene as captured from N sensors. The frames include at least a current frame and a previous frame. A surprise map can be generated based on features found in the current frame and the previous frame. The surprise map having a plurality of values corresponding to spatial locations within the scene. Based on the values, a surprise in the scene can be identified if a value in the surprise map exceeds a predetermined threshold.
摘要:
Described is a system for ordering images. The system receives a plurality of images. Image features are extracted from each image. A set of all possible image pairs are generated for all images. A similarity metric with weights is generated between the images in each image pair in the set, with a net similarity metric thereafter generated by combining the similarity metrics. The images are then ordered according to the net similarity metrics to generate a computer-ordered set of images. The computer-ordered set of images is then displayed to the user, which allows the user to re-order the images to generate a user-ordered set of images. The weights are then optimized to minimize the distance between the computer-ordered set of images and the user-ordered set of images. The similarity metrics are then re-weighted, with the images thereafter being re-ordered according to the new metrics.
摘要:
Described is a system for optimizing rapid serial visual presentation (RSVP). A similarity metric is computed for RSVP images, and the images are sequenced according to the similarity metrics. The sequenced images are presented to a user, and neural signals are received to detect a P300 signal. A neural score for each image is computed, and the system is optimized to model the neural scores. The images are resequenced according a predictive model to output a sequence prediction which does not cause a false P300 signal. Additionally, the present invention describes computing a set of motion surprise maps from image chips. The image chips are labeled as static or moving and prepared into RSVP datasets. Neural signals are recorded in response to the RSVP datasets, and an EEG score is computed from the neural signals. Each image chip is then classified as containing or not containing an item of interest.
摘要:
Described is a system for finding salient regions in imagery. The system improves upon the prior art by receiving an input image of a scene and dividing the image into a plurality of image sub-regions. Each sub-region is assigned a coordinate position within the image such that the sub-regions collectively form the input image. A plurality of local saliency maps are generated, where each local saliency map is based on a corresponding sub-region and a coordinate position representative of the corresponding sub-region. Finally, the plurality of local saliency maps is combined according to their coordinate positions to generate a single global saliency map of the input image of the scene.
摘要:
Described is a system for multiple-object recognition in visual images. The system is configured to receive an input test image comprising at least one object. Keypoints representing the object are extracted using a local feature algorithm. The keypoints from the input test image are matched with keypoints from at least one training image stored in a training database, resulting in a set of matching keypoints. A clustering algorithm is applied to the set of matching keypoints to detect inliers among the set of matching keypoints. The inliers and neighboring keypoints in a vicinity of the inliers are removed from the input test image. An object label and an object boundary for the object are generated, and the object in the input test image is identified and segmented. Also described is a method and computer program product for multiple-object recognition in visual images.
摘要:
An apparatus includes an electric generator having a stator and a rotor. A turbine is coupled to an end of the rotor to rotate at the same speed as the rotor. The turbine may rotate in response to expansion of a working fluid flowing from an inlet side to an outlet side of the turbine. The apparatus also includes a housing assembly with an inwardly oriented shroud, which is located at close proximity to the turbine. The proximity of the shroud to the turbine establishes the pressure ratio of the turbine, allowing the system to operate without seals. Magnetic bearings and position sensors are used to maintain the distance between the shroud and the wheel. In certain implementations, the positioning of the turbine can be controlled to optimize machine performance.
摘要:
Methods and systems for image processing are provided. A method for processing images of a scene includes receiving image data of a reference and a current frame; generating N motion vectors that describe motion of the image data within the scene by computing a correlation function on the reference and current frames at each of N registration points; registering the current frame based on the N motion vectors to produce a registered current frame; and updating the image data of the scene based on the registered current frame. Optionally, registered frames may be oversampled. Techniques for generating the N motion vectors according to roll, zoom, shift and optical flow calculations, updating image data of the scene according to switched and intermediate integration approaches, re-introducing smoothed motion into image data of the scene, re-initializing the process, and processing images of a scene and moving target within the scene are provided.
摘要:
An integrated gasification combined cycle power generation system (100). In one embodiment, shown in FIG. 1, a gasifier (108) is configured to generate synthetic gas (117) from a carbonaceous material (106) and an oxygen supply (109) with a cleaning stage (120) positioned to receive synthetic gas (117) from the gasifier (108) and remove impurities therefrom. A gas turbine combustion system (2) including a turbine (123) is configured to receive fuel (128) from the gasifier (108) and a first air supply (131) from a first air compressor (130). A steam turbine system (4) is configured to generate power with heat recovered from exhaust (140) generated by the gas turbine system (2) and an ion transport membrane air separation unit (110) includes a second air compressor (114) for generating a second air supply (113). A first heat exchanger (118) is configured to cool the synthetic gas (117) prior to removal of impurities in the cleaning stage (120) by flowing the second air supply (113) through the first heat exchanger (118) so that the second air supply (113) receives heat from the synthetic gas (117).
摘要:
An apparatus includes an electric generator having a stator and a rotor. A turbine is coupled to an end of the rotor to rotate at the same speed as the rotor. The turbine may rotate in response to expansion of a working fluid flowing from an inlet side to an outlet side of the turbine. The apparatus also includes a housing assembly with an inwardly oriented shroud, which is located at close proximity to the turbine. The proximity of the shroud to the turbine establishes the pressure ratio of the turbine, allowing the system to operate without seals. Magnetic bearings and position sensors are used to maintain the distance between the shroud and the wheel. In certain implementations, the positioning of the turbine can be controlled to optimize machine performance.
摘要:
An integrated gasification combined cycle power generation system (100). In one embodiment, shown in FIG. 1, a gasifier (108) is configured to generate synthetic gas (117) from a carbonaceous material (106) and an oxygen supply (109) with a cleaning stage (120) positioned to receive synthetic gas (117) from the gasifier (108) and remove impurities therefrom. A gas turbine combustion system (2) including a turbine (123) is configured to receive fuel (128) from the gasifier (108) and a first air supply (131) from a first air compressor (130). A steam turbine system (4) is configured to generate power with heat recovered from exhaust (140) generated by the gas turbine system (2) and an ion transport membrane air separation unit (110) includes a second air compressor (114) for generating a second air supply (113). A first heat exchanger (118) is configured to cool the synthetic gas (117) prior to removal of impurities in the cleaning stage (120) by flowing the second air supply (113) through the first heat exchanger (118) so that the second air supply (113) receives heat from the synthetic gas (117).