摘要:
A thin layer of organic semiconductor material comprising a comprising an organic semiconductor thin film material is disclosed in which the thin film material substantially comprises a heteropyrene compound or derivative. In one embodiment, a thin film transistor comprises a layer of the organic semiconductor material. Further disclosed is a process for fabricating an organic thin-film transistor device, preferably by relative low-temperature sublimation or solution-phase deposition onto a substrate.
摘要:
A thin layer of organic semiconductor material comprising a comprising an organic semiconductor thin film material is disclosed in which the thin film material substantially comprises a heteropyrene compound or derivative. In one embodiment, a thin film transistor comprises a layer of the organic semiconductor material. Further disclosed is a process for fabricating an organic thin-film transistor device, preferably by relative low-temperature sublimation or solution-phase deposition onto a substrate.
摘要:
A thin film transistor comprises a layer of organic semiconductor material comprising a tetracarboxylic diimide naphthalene-based compound having, attached to one or both of the imide nitrogen atoms, a substituted or unsubstituted heterocycloalkyl ring system. Such transistors can further comprise spaced apart first and second contacts or electrodes in contact with said material. Further disclosed is a process for fabricating an organic thin-film transistor device, preferably by sublimation deposition onto a substrate, wherein the substrate temperature is no more than 200° C.
摘要:
A thin film transistor comprises a layer of organic semiconductor material comprising a configurationally controlled N,N′-dicycloalkyl-substituted naphthalene-1,4,5,8-bis-carboximide compound having a substituted or unsubstituted alicyclic ring independently attached to each imide nitrogen atom with the proviso that at least one of the two alicyclic rings is necessarily a 4-substituted cyclohexyl ring in which a substituent at the 4-position is the sole substituent on the 4-substituted cyclohexyl ring other than the imide attachment; with such substituent being stereochemically disposed as only one of either an essentially trans or cis position, respectively, to the imide nitrogen substituent. Such transistors can further comprise spaced apart first and second contact means or electrodes in contact with said material. Further disclosed is a process for fabricating an organic thin-film transistor device, preferably by sublimation deposition onto a substrate, wherein the substrate temperature is no more than 100° C.
摘要:
A thin film transistor comprises a layer of organic semiconductor material comprising a configurationally controlled N,N′-dicycloalkyl-substituted naphthalene-1,4,5,8-bis-carboximide compound having a substituted or unsubstituted alicyclic ring independently attached to each imide nitrogen atom with the proviso that at least one of the two alicyclic rings is necessarily a 4-substituted cyclohexyl ring in which a substituent at the 4-position is the sole substituent on the 4-substituted cyclohexyl ring other than the imide attachment; with such substituent being stereochemically disposed as only one of either an essentially trans or cis position, respectively, to the imide nitrogen substituent. Such transistors can further comprise spaced apart first and second contact means or electrodes in contact with said material. Further disclosed is a process for fabricating an organic thin-film transistor device, preferably by sublimation deposition onto a substrate, wherein the substrate temperature is no more than 100° C.
摘要:
A thin film transistor comprises a layer of organic semiconductor material comprising a tetracarboxylic diimide naphthalene-based compound having, attached to one or both of the imide nitrogen atoms, a substituted or unsubstituted heterocycloalkyl ring system. Such transistors can further comprise spaced apart first and second contacts or electrodes in contact with said material. Further disclosed is a process for fabricating an organic thin-film transistor device, preferably by sublimation deposition onto a substrate, wherein the substrate temperature is no more than 200° C.
摘要:
The present invention relates to a photoalignable material comprising a photoactive stilbazolium-containing polymer of formula I: wherein, Ma, Mb, Mc are monomer units making up the polymer; x, y, z, are mole fractions of the monomer units Ma, Mb, Mc, wherein in each case 0
摘要:
Disclosed is a multilayer film comprising a substrate bearing an aligned liquid crystal layer wherein the aligned liquid crystal layer contains an azolium salt represented by formula (I): whereinthe subscripts represent the ring positions and each X is independently N or C—R;each Z is independently N, N—R, C—(R)(R), O, S, SO2, SO, C═O, C═S, or C═NR;each R group is independently hydrogen or a substituent; andY is a charge balancing anion, which may be a separate moiety or part of an X, Z, or R;provided two or more X, Z and R groups may form a ring;provided the salt may be part of an oligomer or polymer.Such a film provides a predetermined increase in pre-tilt angle for use in liquid crystal devices.
摘要:
Disclosed is a multilayer film comprising a substrate bearing an aligned liquid crystal layer wherein the liquid crystal layer contains a Lewis acid. Such a film is useful for aligning a liquid crystal material to an increased tilt angle.
摘要:
A thin film transistor comprises a layer of organic semiconductor that comprises an N,N′-1,4,5,8-naphthalenetetracarboxylic acid diimide having at least one cycloalkyl group having a fluorinated substituent at its 4-position that adopts an equatorial orientation in the trans configuration of the cycloalkyl group and an axial orientation in the cis configuration of the cycloalkyl group. Such transistors can be a field effect transistor having a dielectric layer, a gate electrode, a source electrode and a drain electrode. The gate electrode and the thin film of organic semiconductor material both contact the dielectric layer, and the source electrode and the drain electrode both contact the thin film of organic semiconductor material.