摘要:
An information handling system (IHS) performs current calibration of a multi-phase VR using leakage current as a reference current. The IHS includes a multi-phase voltage regulator (VR) module coupled to an output port of a power supply unit (PSU). The VR module includes: a multi-phase VR having an integrated power stage that provides pulse width modulation (PWM) functionality for controlling operating phases of VR current in the multi-phase VR; and a digital controller coupled to the multi-phase VR. The controller: enables a known, high accuracy operating phase as loading calibrator for offset training; records a leakage current value as a reference current; enables a first unknown, low accuracy operating phase; determines, for the unknown operating phase, an offset value that provides a specified target current accuracy; updates an offset register for the unknown operating phase with the corresponding offset value; and disables the unknown operating phase.
摘要:
A voltage regulator may comprise a high-side switch and a low-side switch for delivering electrical current to the at least one information handling resource, a high-side driver configured to drive a high-side driving voltage for regulating a first electrical current of the high-side switch, a low-side driver configured to drive a low-side driving voltage for regulating a second electrical current of the low-side switch, and a control circuit configured to operate the at least one voltage regulator in both of a fixed dead time mode and an adaptive dead time mode.
摘要:
An information handling system (IHS) performs current calibration of a multi-phase VR using leakage current as a reference current. The IHS includes a multi-phase voltage regulator (VR) module coupled to an output port of a power supply unit (PSU). The VR module includes: a multi-phase VR having an integrated power stage that provides pulse width modulation (PWM) functionality for controlling operating phases of VR current in the multi-phase VR; and a digital controller coupled to the multi-phase VR. The controller: enables a known, high accuracy operating phase as loading calibrator for offset training; records a leakage current value as a reference current; enables a first unknown, low accuracy operating phase; determines, for the unknown operating phase, an offset value that provides a specified target current accuracy; updates an offset register for the unknown operating phase with the corresponding offset value; and disables the unknown operating phase.
摘要:
Disclosed herein are embodiments of an improved switching regulator and a method for controlling a switching regulator, for example, to meet stringent transient demand and high efficiency requirements over wide operating range without impacting system stability. According to one embodiment, the switching regulator may be a voltage regulator comprising a plurality of voltage regulator phases, each phase comprising a power stage operable to produce an output voltage for a transient load, and a driver stage coupled for driving the power stage based on a modulated input signal supplied to the driver stage. A variable inductor is included within the power stages in order to meet stringent transient demand and high efficiency requirements over a range of load conditions and operating set points. A power controller is coupled for controlling the modulated input signals supplied to the driver stages to compensate for changing output filter characteristics when the inductance of the variable inductors changes with changes in the load current.
摘要:
A voltage regulator may comprise a high-side switch and a low-side switch for delivering electrical current to the at least one information handling resource, a high-side driver configured to drive a high-side driving voltage for regulating a first electrical current of the high-side switch, a low-side driver configured to drive a low-side driving voltage for regulating a second electrical current of the low-side switch, and a control circuit configured to operate the at least one voltage regulator in both of a fixed dead time mode and an adaptive dead time mode.
摘要:
A voltage regulator may comprise a high-side switch and a low-side switch for delivering electrical current to the at least one information handling resource, a high-side driver configured to drive a high-side driving voltage for regulating a first electrical current of the high-side switch, a low-side driver configured to drive a low-side driving voltage for regulating a second electrical current of the low-side switch, and a control circuit configured to operate the at least one voltage regulator in both of a fixed dead time mode and an adaptive dead time mode.
摘要:
A voltage regulator may comprise a high-side switch and a low-side switch for delivering electrical current to the at least one information handling resource, a high-side driver configured to drive a high-side driving voltage for regulating a first electrical current of the high-side switch, a low-side driver configured to drive a low-side driving voltage for regulating a second electrical current of the low-side switch, and a control circuit configured to operate the at least one voltage regulator in both of a fixed dead time mode and an adaptive dead time mode.
摘要:
A multiphase voltage regulator (VR) has a VR controller that performs automatic VR phase assignment and configuration for single or multi-output rails of an Information Handling System (IHS). VR power circuit has power stages selectably coupled to output voltage connection(s) or rail(s) that deliver electrical energy to information handling resource(s). VR controller is coupled to the VR power circuit and provides a first reference voltage (IREF) signal to the VR power circuit. VR controller identifies any power stages that return a load current monitor (IMON) signal that indicates that the respective power stage is coupled to the first IREF signal. VR controller regulates identified power stages of the VR power circuit during delivery of electrical power to information handling resource(s). Regulation is according to a VR configuration that is selected based on identified VR phases assigned to a first output voltage loop and associated with the first IREF signal.
摘要:
Systems and methods for adaptive modulation of MOSFET driver key parameters for improved voltage regulator efficiency and reliability in a voltage regulator may include a power stage. The power stage may include a high side switch including a high side gate, a peak voltage detection circuit, and a high side driver strength modulator circuit. The high side driver strength modulator circuit may determine a high side driver strength level. The high side driver strength modulator circuit may also connect a subset of the set of high side gate drivers to the high side gate based on the high side driver strength level. The high side driver strength modulator circuit may also disconnect a remaining subset of the set of high side gate drivers from the high side gate.
摘要:
A method and an information handling system (IHS) perform current calibration of a multi-phase voltage regulator (VR) by using a calibrated operating phase to calibrate an unknown operating phase. A calibration controller, using a pulse width modulation (PWM) controller, enables a first unknown operating phase within a first converter sub-circuit in the multiphase VR. The calibration controller enables a calibrated circuit component electronically coupled to the first unknown operating phase. The calibration controller determines a target voltage for the first unknown operating phase based on sense component specifications. The calibration controller determines, for the first unknown operating phase, a sense voltage that identifies the first unknown operating phase as a first evaluated operating phase. The calibration controller performs calibration of operating phases of the multi-phase VR, including the first evaluated operating phase, based on a respective difference between a sense voltage and a corresponding target voltage for each operating phase.