Abstract:
A brake master cylinder-sensor system and method are provided. The system includes a master cylinder, a piston slidably positioned in the master cylinder, a magnet positioned on the piston, and a sensor disposed on the master cylinder. A change of piston linear position causes a linear change in a magnetic field position sensed by the sensor, and a brake control signal proportional to the change of piston linear position is generated. A method of operating a brake master cylinder-sensor system includes applying a brake pedal force, changing a piston linear position within a master cylinder, determining a change in a linear magnetic field position proportional to the change of the piston linear position, and generating a brake control signal based on the change in the linear magnetic field position.
Abstract:
An assembly for sensing travel by a piston in a master cylinder comprises a magnet and a retainer for retaining the magnet proximate the piston. An orientation screw engages an axial slot in the piston to inhibit rotation of the piston.
Abstract:
An apparatus and method are provided for sensing the position of a point of contact through use of a sensor having a movable element, disposed between a sensing element and a source of magnetic flux, and having an aperture therein for allowing a portion of the magnetic flux from the source of magnetic flux to pass through the aperture and impinge on the sensing element. The aperture may have various shapes to provide a desired linear or non-linear relationship between the position of the movable element and the intensity of the flux that passes through the aperture and impinges on the sensing element for a given position of the movable element.
Abstract:
A non-contact Hall Effect position sensor integral to a master cylinder for an automotive hydraulic braking system provides reliable brake pedal position information without regard to the geometry and placement of the brake pedal input, decreasing the complexity of integration into each type of automobile. Moreover, reliable performance of brake position sensing is provided by avoiding use of contact sensors that are subject to wear and performance variation.