Abstract:
Methods for flyback converters are provided. The method, adopted by a flyback converter circuit including a transformer, including: determining an output voltage output from a secondary circuit of the transformer; feeding a feedback voltage based on the output voltage from the secondary circuit back to a primary circuit of the transformer; increasing a current limit and a switching frequency of a primary current with the feedback voltage; and supplying the primary current to a primary winding of the transformer.
Abstract:
The disclosure relates to an optical transceiver and a manufacturing method thereof. The optical transceiver includes a substrate, a thermal-conductive substrate, a first metal wiring structure, a light-transceiving element and an optical fiber array. The substrate has an opening, and the thermal-conductive substrate is embedded within the opening. The first metal wiring structure is integrally formed on the substrate and the thermal-conductive substrate through an electroplating or a wire-printing process. The light-transceiving element is disposed on the thermal-conductive substrate and is electrically connected to the first metal wiring structure. The optical fiber array is arranged on the thermal-conductive substrate for communication with the light-transceiving element.
Abstract:
An optical transceiver includes an input assembly, an output port, a fiber patch panel, multiple first optical fibers and multiple second optical fibers. The input assembly is arranged on a circuit board and has a first input port and a second input port. The fiber patch panel is arranged between the input assembly and the output port, and has multiple first fiber patch slots and multiple second fiber patch slots. The first optical fibers are connected to the first input port and the output port. The first optical fiber passes through the first fiber patch slot and the second fiber patch slot. The second optical fibers are connected to the second input port and the output port. The second optical fiber passes through the first fiber patch slot and the second fiber patch slot. The second fiber patch slot accommodates the first optical fiber and the second optical fiber.
Abstract:
The disclosure relates to an optical transceiver and a manufacturing method thereof. The optical transceiver includes a substrate, a thermal-conductive substrate, a first metal wiring structure, a light-transceiving element and an optical fiber array. The substrate has an opening, and the thermal-conductive substrate is embedded within the opening. The first metal wiring structure is integrally formed on the substrate and the thermal-conductive substrate through an electroplating or a wire-printing process. The light-transceiving element is disposed on the thermal-conductive substrate and is electrically connected to the first metal wiring structure. The optical fiber array is arranged on the thermal-conductive substrate for communication with the light-transceiving element.