Abstract:
A process and device for producing a wire (12) made of amorphous metal alloy having an iron base by producing a jet (7) of molten alloy (4) through the orifice (60) of a die (6), and introducing this jet (7) into a cooling liquid (9) urged by centrifugal force against the inner wall of a rotary drum. The crucible (2) containing the alloy (4) and the die (6) are made using different materials and are joined by a joint (25) the material of which differs from those of the crucible (2) and of the die (6). Furthermore, means (3) are employed for heating the alloy (4) both in the crucible (2) and in the die (6) and an inert or reducing gas is delivered directly in contact with the jet (7) as it leaves the die (6). Wire (12) obtained with this process or this device, this wire being employed, for example, for reinforcing pneumatic tires.
Abstract:
A method and device (1) for the continuous production of a thread (12) by extrusion of a molten material into a cooling liquid (9) applied by centrifuging against the inner wall (10) of a drum (11). The inner wall (10) of the drum (11) comprises a lateral surface (102) which progressively approaches the axis of rotation of the drum (11) in the direction towards the outside (E) of the drum (11). Means (23, 24) are used which make it possible to displace the thread (12) along said surface (102) so that the thread (12) emerges from the drum (11) under the action of the centrifugal force. Threads (12) obtained by this method and this device, these threads being, for instance, amorphous metal threads used to reinforce automobile tires.
Abstract:
A polyphase variable reluctance electric motor is provided which may be of the linear or rotary type. It has a stator with m windings (34, 36, 38) creating a magnetic flux in the direction of movement of the mobile core and a source (40, 42) for energizing the windings with a differential phase shift, each winding being associated with its own ferromagnetic circuit completed through the core, characterized in that the core has several ferromagnetic first blades (18) parallel to the direction of movement and each split up in the longitudinal direction into first studs (20) having a given pitch p and in that the ferromagnetic circuit of each winding includes interleaved second blades alternating with those of the core and split up into second studs (14) at the same pitch p.