摘要:
A silicon carbide lateral metal-oxide-semiconductor field-effect transistor (SiC LMOSFET) having a self-aligned drift region and method for forming the same is provided. Specifically, the SiC LMOSFET includes a source region, a drift region and a drain region. The source and drain regions are implanted using non self-aligned technology (i.e., prior to formation of the gate electrode and the gate oxide layer), while the drift region is implanted using self-aligned technology (i.e., after formation of the gate electrode and the gate oxide layer). By self-aligning the drift region to the gate electrode, the overlap between the two is minimized, which reduces the capacitance of the device. When capacitance is reduced, performance is improved.
摘要:
Method for setup of parameter values in a RF power amplifier circuit arrangement (200), wherein the amplifier circuit arrangement (200) comprises a first (210) and a second (220) amplification branch and is operated in an out-phasing configuration for amplification of RF input signals with modulated amplitude and modulated phase and respective circuit arrangements are disclosed. According to a first aspect a re-optimization of the dead-time or conversely the duty-cycle, respectively, the phase of the output signal after the combiner can be kept linear with respect to the out-phasing angle. Further, according to a second aspect, additionally to introduction of an optimally chosen dead-time, a non-coherent combiner (Lx, Lx*) can reduce crowbar current and switching losses due the output capacitance (Cds). Furthermore, according to a third aspect the reactive compensation can, additionally or alternatively, be controlled by operating both amplification branches at different duty-cycles.
摘要:
A device is disclosed. The device includes a plurality of microphones to receive ultra-sound signals, wherein the ultra-sound signals include an encoded data. The device also includes a microcontroller coupled to the plurality of microphones. The microcontroller is configured to detect the ultra-sound signals through the plurality of microphones. The detection of the ultra-sound signals includes calculating an angle of arrival of the ultra-sound signals at a microphone in the plurality of microphones. The microcontroller is configured to perform a transaction based on the encoded data received via a microphone in the plurality of microphones.
摘要:
Method for setup of parameter values in a RF power amplifier circuit arrangement (200), wherein the amplifier circuit arrangement (200) comprises a first (210) and a second (220) amplification branch and is operated in an out-phasing configuration for amplification of RF input signals with modulated amplitude and modulated phase and respective circuit arrangements are disclosed. According to a first aspect a re-optimization of the dead-time or conversely the duty-cycle, respectively, the phase of the output signal after the combiner can be kept linear with respect to the out-phasing angle. Further, according to a second aspect, additionally to introduction of an optimally chosen dead-time, a non-coherent combiner (Lx, Lx*) can reduce crowbar current and switching losses due the output capacitance (Cds). Furthermore, according to a third aspect the reactive compensation can, additionally or alternatively, be controlled by operating both amplification branches at different duty-cycles.
摘要:
A switching amplifier (200; 300; 400; 500) comprising: a switch (202; 302) configured to electrically connect and disconnect a first pin (202a; 302a) of the switch (202; 302) to a second pin (202b; 302b) of the switch (202; 302) in accordance with a pulse width modulated input signal (216; 316; 516). The second pin (202b; 302b) is connected to a ground connector (204; 304). The switching amplifier also comprises a feed inductor (206; 306; 406) connected between a voltage supply connector (208; 308) and the first pin (202a; 302a) of the switch (202; 302), and a circuit (210; 310; 522) comprising a variable component having a variable imaginary impedance. The circuit (210; 310; 522) is connected between the first pin (202a; 302a) of the switch (202; 302) and an output connector of the amplifier (212; 312. The switching amplifier further comprising a controller (214; 314; 514) configured to generate a control signal (315; 515) for the circuit (210; 310; 522) such that the variable component of the circuit is adjustable in accordance with the duty cycle of the pulse width modulated input signal (216; 316; 516).