Abstract:
A control system for controlling the functionality of an electrically powered vehicle is described. The control system comprises a plurality of control modules in electronic communication with each of the control modules being programmed to implement a specific control function for the vehicle. The control modules comprise a first memory for storing data for implementing the control function, and the system further comprises at least one second memory for storing data for implementing each control function of the separate modules, wherein the data can be recorded to the second memory from the control modules.
Abstract:
A control system for controlling the functionality of an electrically powered vehicle is described. The control system comprises a plurality of control modules in electronic communication with each of the control modules being programmed to implement a specific control function for the vehicle. The control modules comprise a first memory for storing data for implementing the control function, and the system further comprises at least one second memory for storing data for implementing each control function of the separate modules, wherein the data can be recorded to the second memory from the control modules.
Abstract:
A control device is provided configured to provide user control signals. The control device comprises a magnetic flux sensing unit configured to provide two-dimensional angular orientation information with respect to a magnetic field acting on the magnetic flux sensing unit, and the user control signals are dependent on the two-dimensional angular orientation information. The control device further comprises a magnet arrangement comprising at least two permanent magnets configured to generate the magnetic field. The magnet arrangement and the magnetic flux sensing unit are arranged to be reoriented relative to one another within a predetermined range of movement, and the at least two permanent magnets are arranged relative to the magnetic flux sensing unit such that the magnetic field experienced by the magnetic flux sensing unit is substantially uniform throughout the predetermined range of movement.
Abstract:
A control system for use in safety critical human/machine control interfaces is described, more particularly a joystick type control system and particularly a joystick type control system utilizing magnetic positional sensing. The control system provides a control input device having a movable magnet, a pole-piece frame arrangement positioned about the magnet, at least three magnetic flux sensors being positioned in said pole-piece frame arrangement and a monitoring arrangement for monitoring the output signal of each of said at least three sensors.
Abstract:
A control device is provided configured to provide user control signals. The control device comprises a magnetic flux sensing unit configured to provide two-dimensional angular orientation information with respect to a magnetic field acting on the magnetic flux sensing unit, and the user control signals are dependent on the two-dimensional angular orientation information. The control device further comprises a magnet arrangement comprising at least two permanent magnets configured to generate the magnetic field. The magnet arrangement and the magnetic flux sensing unit are arranged to be reoriented relative to one another within a predetermined range of movement, and the at least two permanent magnets are arranged relative to the magnetic flux sensing unit such that the magnetic field experienced by the magnetic flux sensing unit is substantially uniform throughout the predetermined range of movement.
Abstract:
A control system for use in safety critical human/machine control interfaces is described, more particularly a joystick type control system and particularly a joystick type control system utilizing magnetic positional sensing. The control system provides a control input device having a movable magnet, a pole-piece frame arrangement positioned about the magnet, at least three magnetic flux sensors being positioned in said pole-piece frame arrangement and a monitoring arrangement for monitoring the output signal of each of said at least three sensors.
Abstract:
A control system current (DC) motor in which driving signals are supplied to the stator windings of the motor in accordance with a measurement of the rotational speed of the motor and the position of the rotor of the motor. The speed measurement is obtained by combining a first signal representing the rotational speed of the motor derived from a measurement of the back-EMF developed in the stator windings of the motor and a second signal representing the rotational speed of the motor derived from the output of a sensor which senses the position of the rotor of the motor.