摘要:
Multiple object segmentation is performed for three-dimensional computed tomography. The adjacent objects are individually segmented. Overlapping regions or locations designated as belonging to both objects may be identified. Confidence maps for the individual segmentations are used to label the locations of the overlap as belonging to one or the other object, not both. This re-segmentation is applied for the overlapping local, and not other locations. Confidence maps in re-segmentation and application just to overlap locations may be used independently of each other or in combination.
摘要:
Multiple object segmentation is performed for three-dimensional computed tomography. The adjacent objects are individually segmented. Overlapping regions or locations designated as belonging to both objects may be identified. Confidence maps for the individual segmentations are used to label the locations of the overlap as belonging to one or the other object, not both. This re-segmentation is applied for the overlapping local, and not other locations. Confidence maps in re-segmentation and application just to overlap locations may be used independently of each other or in combination.
摘要:
A method and system for automatic bone segmentation and landmark detection for joint replacement surgery is disclosed. A 3D medical image of at least a target joint region of a patient is received. A plurality bone structures are automatically segmented in the target joint region of the 3D medical image and a plurality of landmarks associated with a joint replacement surgery are automatically detected in the target joint region of the 3D medical image. The boundaries of segmented bone structures can then be interactively refined based on user inputs.
摘要:
A method and system for automatic bone segmentation and landmark detection for joint replacement surgery is disclosed. A 3D medical image of at least a target joint region of a patient is received. A plurality bone structures are automatically segmented in the target joint region of the 3D medical image and a plurality of landmarks associated with a joint replacement surgery are automatically detected in the target joint region of the 3D medical image. The boundaries of segmented bone structures can then be interactively refined based on user inputs.
摘要:
A method and system for extracting rib centerlines in a 3D volume, such as a 3D computed tomography (CT) volume, is disclosed. Rib centerline voxels are detected in the 3D volume using a learning based detector. Rib centerlines or the whole rib cage are then extracted by matching a template of rib centerlines for the whole rib cage to the 3D volume based on the detected rib centerline voxels. Each of the extracted rib centerlines are then individually refined using an active contour model.
摘要:
Ribs are automatically ordered and paired. After ordering ribs on each side, magnetic and spring functions are used to solve for rib pairing. The magnetic function is used to constrain possible pairs across sides, and the spring function is used to maintain the order on each side while accounting for missing or fused ribs.
摘要:
A method and system for automatically detecting liver lesions in medical image data, such as 3D CT images, is disclosed. A liver region is segmented in a 3D image. Liver lesion center candidates are detected in the segmented liver region. Lesion candidates are segmented corresponding to the liver lesion center candidates, and lesions are detected from the segmented lesion candidates using learning based verification.
摘要:
A method and system for automatically detecting liver lesions in medical image data, such as 3D CT images, is disclosed. A liver region is segmented in a 3D image. Liver lesion center candidates are detected in the segmented liver region. Lesion candidates are segmented corresponding to the liver lesion center candidates, and lesions are detected from the segmented lesion candidates using learning based verification.
摘要:
A method and system for automatic detection and volumetric quantification of bone lesions in 3D medical images, such as 3D computed tomography (CT) volumes, is disclosed. Regions of interest corresponding to bone regions are detected in a 3D medical image. Bone lesions are detected in the regions of interest using a cascade of trained detectors. The cascade of trained detectors automatically detects lesion centers and then estimates lesion size in all three spatial axes. A hierarchical multi-scale approach is used to detect bone lesions using a cascade of detectors on multiple levels of a resolution pyramid of the 3D medical image.
摘要:
A method and system for extracting rib centerlines in a 3D volume, such as a 3D computed tomography (CT) volume, is disclosed. Rib centerline voxels are detected in the 3D volume using a learning based detector. Rib centerlines or the whole rib cage are then extracted by matching a template of rib centerlines for the whole rib cage to the 3D volume based on the detected rib centerline voxels. Each of the extracted rib centerlines are then individually refined using an active contour model.