摘要:
Multiple object segmentation is performed for three-dimensional computed tomography. The adjacent objects are individually segmented. Overlapping regions or locations designated as belonging to both objects may be identified. Confidence maps for the individual segmentations are used to label the locations of the overlap as belonging to one or the other object, not both. This re-segmentation is applied for the overlapping local, and not other locations. Confidence maps in re-segmentation and application just to overlap locations may be used independently of each other or in combination.
摘要:
Multiple object segmentation is performed for three-dimensional computed tomography. The adjacent objects are individually segmented. Overlapping regions or locations designated as belonging to both objects may be identified. Confidence maps for the individual segmentations are used to label the locations of the overlap as belonging to one or the other object, not both. This re-segmentation is applied for the overlapping local, and not other locations. Confidence maps in re-segmentation and application just to overlap locations may be used independently of each other or in combination.
摘要:
A method and system for automatic bone segmentation and landmark detection for joint replacement surgery is disclosed. A 3D medical image of at least a target joint region of a patient is received. A plurality bone structures are automatically segmented in the target joint region of the 3D medical image and a plurality of landmarks associated with a joint replacement surgery are automatically detected in the target joint region of the 3D medical image. The boundaries of segmented bone structures can then be interactively refined based on user inputs.
摘要:
A method and system for automatic bone segmentation and landmark detection for joint replacement surgery is disclosed. A 3D medical image of at least a target joint region of a patient is received. A plurality bone structures are automatically segmented in the target joint region of the 3D medical image and a plurality of landmarks associated with a joint replacement surgery are automatically detected in the target joint region of the 3D medical image. The boundaries of segmented bone structures can then be interactively refined based on user inputs.
摘要:
Methods and systems for automatic classification of images of internal structures of human and animal bodies. A method includes receiving a magnetic resonance (MR) image testing model and determining a testing volume of the testing model that includes areas of the testing model to be classified as bone or cartilage. The method includes modifying the testing model so that the testing volume corresponds to a mean shape and a shape variation space of an active shape model and producing an initial classification of the testing volume by fitting the testing volume to the mean shape and the shape variation space. The method includes producing a refined classification of the testing volume into bone areas and cartilage areas by refining the boundaries of the testing volume with respect to the active shape model and segmenting the MR image testing model into different areas corresponding to bone areas and cartilage areas.
摘要:
Methods and systems for automatic classification of images of internal structures of human and animal bodies. A method includes receiving a magnetic resonance (MR) image testing model and determining a testing volume of the testing model that includes areas of the testing model to be classified as bone or cartilage. The method includes modifying the testing model so that the testing volume corresponds to a mean shape and a shape variation space of an active shape model and producing an initial classification of the testing volume by fitting the testing volume to the mean shape and the shape variation space. The method includes producing a refined classification of the testing volume into bone areas and cartilage areas by refining the boundaries of the testing volume with respect to the active shape model and segmenting the MR image testing model into different areas corresponding to bone areas and cartilage areas.
摘要:
Described herein is a framework for multi-view matching of regions of interest in images. According to one aspect, a processor receives first and second digitized images, as well as at least one CAD finding corresponding to a detected region of interest in the first image. The processor determines at least one candidate location in the second image that matches the CAD finding in the first image. The matching is performed based on local appearance features extracted for the CAD finding and the candidate location. In accordance with another aspect, the processor receives digitized training images representative of at least first and second views of one or more regions of interest. Feature selection is performed based on the training images to select a subset of relevant local appearance features to represent instances in the first and second views. A distance metric is then learned based on the subset of local appearance features. The distance metric may be used to perform matching of the regions of interest.
摘要:
Described herein is a framework for multi-view matching of regions of interest in images. According to one aspect, a processor receives first and second digitized images, as well as at least one CAD finding corresponding to a detected region of interest in the first image. The processor determines at least one candidate location in the second image that matches the CAD finding in the first image. The matching is performed based on local appearance features extracted for the CAD finding and the candidate location. In accordance with another aspect, the processor receives digitized training images representative of at least first and second views of one or more regions of interest. Feature selection is performed based on the training images to select a subset of relevant local appearance features to represent instances in the first and second views. A distance metric is then learned based on the subset of local appearance features. The distance metric may be used to perform matching of the regions of interest.