Abstract:
Described herein are systems and methods in which resource-related content is provided to a number of mobile devices. In some embodiments, as a content provider streams a media presentation or a live real-world event occurs, it may also provide an indication of a resource to a content distribution hub. Upon receiving that indication of the resource, the content distribution hub may identify and/or generate resource-related content relevant to the indicated resource. The resource-related content may then be distributed to a number of subscriber devices according to subscription data maintained by the content distribution hub. In some embodiments, the content hub is also configured to initiate transactions related to the resources.
Abstract:
A pacemaker is provided. The pacemaker includes a pulse generator and an electrode line connecting with the pulse generator. The electrode line includes at least one conductor. The at least one conductor includes at least one carbon nanotube wire having a plurality of radioactive particles therein.
Abstract:
A display device includes a display element and a touch panel including a first electrode plate and a second electrode plate. The first electrode plate includes a first conductive layer and two first electrodes electrically connected to the first conductive layer. The second electrode plate includes a second conductive layer and two second electrodes electrically connected to the second conductive layer. The display element includes a plurality of pixels arranged in rows and columns along a first direction and a second direction. At least one of the first conductive layer and the second conductive layer includes a plurality of carbon nanotubes arranged primarily along the same aligned direction. The aligned direction and the second direction define an angle ranging from above 0° to less than or equal to 90°.
Abstract:
A carbon nanotube film supporting structure is provided. The carbon nanotube film supporting structure is used for supporting a carbon nanotube film structure. The carbon nanotube film supporting structure includes a body and a number of voids. The body has a surface defining a support region. The voids are defined in the support region. A void ratio of the support region is greater than or equal to 80%. The present disclosure also provides a method for using the carbon nanotube film supporting structure.
Abstract:
A multi-mode intelligent access method, device and system are disclosed. The method includes that: a multi-mode mobile intelligent access device is added into a communication network; and the multi-mode mobile intelligent access device employs a way including flow mobility between different access networks, so as to enable a terminal to access a core network gateway through multiple kinds of access networks. By means of the multi-mode intelligent access technology of the disclosure, a terminal can use multiple kinds of access networks at the same time, and the flow mobility between the different access networks can be implemented, so as to utilize wireless bandwidths optimally and improve the transmission speed while reducing the cost of a mobile terminal and enhancing service experience for a subscriber.
Abstract:
The present disclosure relates to a touch panel includes a transparent insulator and two electrode plates. Each of the two electrode plates includes a transparent conductive layer. The transparent insulator is located between two transparent conductive layers. The transparent insulator has a refractive index larger than 1.0 which can reduce a chromatic dispersion to improve a display effect of the touch panel. The transparent insulator is a continuous layer in a solid state.
Abstract:
A method for controlling battery replacement based on distance data and a system thereof are provided. The method includes: reading current distance data of an electric vehicle, wherein the current distance data indicates the total distance that the electric vehicle has traveled; receiving related recharge information for the electric vehicle submitted by a user, wherein the related recharge information includes a distance account, and the distance account indicates that the user currently adopts a billing policy in which the user is credited with a fixed amount of distance in a fixed period of time; and determining whether to perform an operation of replacing a battery of the electric vehicle according to the distance data and the billing policy. By using the present invention, distance data of an electric vehicle and distance account information can be obtained, and by using the distance data and the distance account information battery replacement can be controlled conveniently, which ensures continuous electricity provided for the green operation of the electric vehicle.
Abstract:
A carbon nanotube film includes a first end and a second end. The second end is opposite to the first end. The carbon nanotube film includes a number of carbon nanotube wires and at least one first carbon nanotube film connected adjacent carbon nanotube wires of the number of carbon nanotube wires. The carbon nanotube wires fan out from the first end to the second end such that a distance between the adjacent carbon nanotube wires gradually increases from the first end to the second end. The carbon nanotube film defines an open angle. A method for making the above-mentioned carbon nanotube film is also provided.
Abstract:
An electrode lead of a pacemaker includes a metal conductive core and a carbon nanotube film. The metal conductive core defines an extending direction. The carbon nanotube film wraps around the metal conductive core. The carbon nanotube film includes a plurality of carbon nanotubes extending substantially along the extending direction of the metal conductive core. A bared part is defined at one end of the electrode lead. A pacemaker using the above mentioned electrode lead is also disclosed.
Abstract:
The present disclosure relates to a method for making a pacemaker electrode lead. In the method, the conductive wire structure and the carbon nanotube structure are provided. A conductive material is combined with the carbon nanotube structure to form a carbon nanotube composite structure. The carbon nanotube composite structure is covered on surface of the conductive wire structure to form a conductive wire composite structure.