Methods and apparatus for monitoring occupancy of wideband GHz spectrum and sensing and decoding respective frequency components of time-varying signals using sub-nyquist criterion signal sampling
    1.
    发明授权
    Methods and apparatus for monitoring occupancy of wideband GHz spectrum and sensing and decoding respective frequency components of time-varying signals using sub-nyquist criterion signal sampling 有权
    用于监视宽带GHz频谱的占用的方法和装置,并且使用次尼基准则信号采样来感测和解码时变信号的各个频率分量

    公开(公告)号:US09544167B2

    公开(公告)日:2017-01-10

    申请号:US14548231

    申请日:2014-11-19

    摘要: Methods and apparatus for monitoring wideband GHz spectrum for wireless communication, and sensing and decoding respective frequency components of a time-varying signal corresponding to the monitored spectrum. Concepts relating to sparse Fast Fourier Transform (sFFT) techniques facilitate identification of one or more frequency components of a sparsely occupied spectrum by sub-sampling the signal corresponding to the monitored spectrum at a sampling rate below the Nyquist criterion. The disclosed methods and apparatus may be implemented using conventional relatively low-power wireless receivers and using off-the-shelf relatively inexpensive low-speed and low-power analog-to-digital converters (ADCs) typically employed in WiFi devices or cellular phones, in tandem with unique processing techniques based on sFFTs and sub-Nyquist criterion sampling, and have demonstrated efficacy even in scenarios where the monitored spectrum is not sparse.

    摘要翻译: 用于监测用于无线通信的宽带GHz频谱的方法和装置,以及感测和解码对应于所监视的频谱的时变信号的各个频率分量。 与稀疏快速傅立叶变换(sFFT)技术有关的概念通过以低于奈奎斯特准则的采样率对与监测光谱相对应的信号进行子采样,从而有助于识别稀疏占用频谱的一个或多个频率分量。 所公开的方法和装置可以使用传统的相对低功率的无线接收机来实现,并且使用通常在WiFi设备或蜂窝电话中使用的现成的相对便宜的低速和低功率模数转换器(ADC) 与基于sFFT和亚奈奎斯特准则抽样的独特处理技术相结合,并且即使在监测频谱不稀疏的情况下也已经证明了效果。

    METHODS AND APPARATUS FOR MONITORING OCCUPANCY OF WIDEBAND GHz SPECTRUM AND SENSING AND DECODING RESPECTIVE FREQUENCY COMPONENTS OF TIME-VARYING SIGNALS USING SUB-NYQUIST CRITERION SIGNAL SAMPLING
    3.
    发明申请
    METHODS AND APPARATUS FOR MONITORING OCCUPANCY OF WIDEBAND GHz SPECTRUM AND SENSING AND DECODING RESPECTIVE FREQUENCY COMPONENTS OF TIME-VARYING SIGNALS USING SUB-NYQUIST CRITERION SIGNAL SAMPLING 有权
    用于监测宽带GHz频谱和传感的方法和装置,并使用次NYQUIST标准信号采样来解码时变信号的相关频率分量

    公开(公告)号:US20160285650A1

    公开(公告)日:2016-09-29

    申请号:US14548231

    申请日:2014-11-19

    IPC分类号: H04L25/02 H04B1/16

    摘要: Methods and apparatus for monitoring wideband GHz spectrum for wireless communication, and sensing and decoding respective frequency components of a time-varying signal corresponding to the monitored spectrum. Concepts relating to sparse Fast Fourier Transform (sFFT) techniques facilitate identification of one or more frequency components of a sparsely occupied spectrum by sub-sampling the signal corresponding to the monitored spectrum at a sampling rate below the Nyquist criterion. The disclosed methods and apparatus may be implemented using conventional relatively low-power wireless receivers and using off-the-shelf relatively inexpensive low-speed and low-power analog-to-digital converters (ADCs) typically employed in WiFi devices or cellular phones, in tandem with unique processing techniques based on sFFTs and sub-Nyquist criterion sampling, and have demonstrated efficacy even in scenarios where the monitored spectrum is not sparse.

    摘要翻译: 用于监测用于无线通信的宽带GHz频谱的方法和装置,以及感测和解码对应于所监视的频谱的时变信号的各个频率分量。 与稀疏快速傅立叶变换(sFFT)技术有关的概念通过以低于奈奎斯特准则的采样率对与监测光谱相对应的信号进行子采样,从而有助于识别稀疏占用频谱的一个或多个频率分量。 所公开的方法和装置可以使用传统的相对低功率的无线接收机来实现,并且使用通常在WiFi设备或蜂窝电话中使用的现成的相对便宜的低速和低功率模数转换器(ADC) 与基于sFFT和亚奈奎斯特准则抽样的独特处理技术相结合,并且即使在监测频谱不稀疏的情况下也已经证明了效果。

    Sensing and Measuring Soil Moisture Using Commodity Radio Frequency Identification (RFID) Systems

    公开(公告)号:US20210286961A1

    公开(公告)日:2021-09-16

    申请号:US17200535

    申请日:2021-03-12

    摘要: A commodity RFID system is used for automatically measuring levels of soil moisture in planting containers. A large number of planting containers are used to grow pots in soil in a greenhouse. An RFID reader interrogates passive RFID tags affixed to the planting containers. The RFID reader can be attached to a robotic arm configured to move above multiple rows and columns of containers. Signal features (e.g., MRT, RSS, DMRT) of specific passive RFID tags affixed to specific ones of the containers are automatically monitored, based on the wireless interrogation of the specific tags by the reader. Soil moisture levels of specific containers are then automatically determined based on the signal features of the attached RFID tags, and effects of soilure moisture on electromagnetic fields of antennas of passive RFID tags.