Abstract:
A holographic display system for generating a super hologram with full parallax in different fields of view in the horizontal and vertical directions. The system includes an array of holographic display devices, e.g., spatial light modulators (SLMs), operable to provide a plurality of holographic images of a scene from differing viewpoints of the scene. Each SLM is operated concurrently to output a narrow field of view, elemental hologram. The system includes coarse integral optics combining the holographic images into a single hologram (“super hologram”) viewable in a hologram image plane a distance from the course integral optics. The coarse integral optics combine the holographic images by providing angular tiling of the holographic images, e.g., bending the axes of parallel lenses. In this manner, the field of view, in one direction, of the super hologram is based on the number of holographic display devices provided in the array in one direction.
Abstract:
A method for performing light-based calibration of optics with caustic surfaces. The method includes mapping a light detecting device to a programmable light source. Then, the method includes operating a calibration light source to direct light onto one or more caustic surfaces of an optical assembly, e.g., an assembly of one or more lenses, facets, lenticules, and lenslets. The method may then involve, with the light detecting device, capturing an image of a projection surface of the optical assembly, which is opposite the one or more caustic surfaces in the optical assembly, as the projection surface is illuminated by the light from the light source. Further, the method includes processing the captured image, along with the mapping of the light detecting device to the programmable light source, to generate a calibration map of the optical assembly including the caustic surfaces.
Abstract:
A three dimensional (3D) display apparatus for without 3D glasses. The display apparatus includes a display element operated to display left and right eye images. A back light assembly back lights the display element and includes light bars with a row of infrared (IR) light receivers that are each paired to a white light emitting diode (LED). Viewers in seats in tiered rows such that their heads are in known viewing locations. Left and right side illuminators illuminate the left and right sides of the faces of the viewers with IR light. The IR light is synchronized with display of the left and right eye images. IR reflected from viewers' faces pass through the display element and is focused onto IR light receivers, which causes LEDs to emit light onto the display element and provide left or right eye images to the viewers at their left or right eyes.
Abstract:
A transparent display system is provided where broadcast talent (or presenter) can see interactive content, tool palettes, prompts (and the like) as well as their own sketches and annotations, but a viewing audience sees only the broadcast talent and content intended for the viewing audience with the talent's annotation thereof. A transparent scattering screen together with optical filtering or gating of a first optical property of the light (e.g., polarization-based or wavelength-based) is used such that the first property of the light is projected onto the screen so the talent can see the projection, and a camera-side filter blocks the first property of the light so it is not seen by the camera. Simultaneously, a broadcast talent (or presenter) is illuminated by light having properties other than the first property, which allows the talent image to pass through the screen and the camera-side filter allowing the talent to be seen by camera. In some embodiments, a transparent “two-sided” display screen allows people on opposite sides of the screen to see each other, as well as independent 2D or 3D content from each person's side of the screen.
Abstract:
According to one implementation, an image generation system includes a rotor, a base including a motor for spinning the rotor about an axis of rotation, a display secured to the rotor, the display including a display surface, and a blur screen secured to the display. The blur screen has a vertical edge substantially parallel to the axis of rotation and includes a first light emission barrier, a second light emission barrier, and a horizontal gap having a width substantially perpendicular to the vertical edge separating the first light emission barrier from the second light emission barrier. The first light emission barrier and the second light emission barrier are configured to substantially prevent rotational blur of an image displayed by the display surface while the display and the blur screen are spun by the motor and the rotor.
Abstract:
There is provided an interactive board for use with a user device having a touch screen. The interactive board includes a plurality of board pads, each of the plurality of board pads including a ground region interdigitated with a sense region, a user device region configured to receive the touch screen of the user device, the user device region including device region pads configured to transmit signals to the touch screen of the user device, a plurality of traces coupling the plurality of board pads to the device region pads, and a ground flap coupled to the ground region of each of the plurality of board pads, the ground flap configured to at least partially cover a back area of the user device.
Abstract:
A multi-planar plenoptic display assembly with multiple spatially-varying light emitting and modulating planes. The display assembly includes at least one light emitting device and may include a modulating device used in conjunction according to display methods taught herein to display light field data. A display assembly controller may be used to render a light field with depth into a multi-planar plenoptic display assembly by assigning decomposed portions of the light field to the display assembly for display or presentation by differing ones of the emitting elements and by operating a modulating device to provide a parallax barrier. In one embodiment, a projector is used with bi-state screens. In another embodiment, two automultiscopic displays (either parallax barrier or lenticular lenses) are overlaid with a beam splitter. In a further embodiment, an oscillating mirror is used to temporally and optically move one automultiscopic layer (either parallax barrier or lenses) through space.
Abstract:
A multi-planar plenoptic display assembly with multiple spatially-varying light emitting and modulating planes. The display assembly includes at least one light emitting device and may include a modulating device used in conjunction according to display methods taught herein to display light field data. A display assembly controller may be used to render a light field with depth into a multi-planar plenoptic display assembly by assigning decomposed portions of the light field to the display assembly for display or presentation by differing ones of the emitting elements and by operating a modulating device to provide a parallax barrier. In one embodiment, a projector is used with bi-state screens. In another embodiment, two automultiscopic displays (either parallax barrier or lenticular lenses) are overlaid with a beam splitter. In a further embodiment, an oscillating mirror is used to temporally and optically move one automultiscopic layer (either parallax barrier or lenses) through space.
Abstract:
A transparent display system is provided where broadcast talent (or presenter) can see interactive content, tool palettes, prompts (and the like) as well as their own sketches and annotations, but a viewing audience sees only the broadcast talent and content intended for the viewing audience with the talent's annotation thereof. A transparent scattering screen together with optical filtering or gating of a first optical property of the light (e.g., polarization-based or wavelength-based) is used such that the first property of the light is projected onto the screen so the talent can see the projection, and a camera-side filter blocks the first property of the light so it is not seen by the camera. Simultaneously, a broadcast talent (or presenter) is illuminated by light having properties other than the first property, which allows the talent image to pass through the screen and the camera-side filter allowing the talent to be seen by camera. In some embodiments, a transparent “two-sided” display screen allows people on opposite sides of the screen to see each other, as well as independent 2D or 3D content from each person's side of the screen.
Abstract:
According to one implementation, an image generation system includes a rotor, a base including a motor for spinning the rotor about an axis of rotation, a display secured to the rotor, the display including a display surface, and a blur screen secured to the display. The blur screen has a vertical edge substantially parallel to the axis of rotation and includes a first light emission barrier, a second light emission barrier, and a horizontal gap having a width substantially perpendicular to the vertical edge separating the first light emission barrier from the second light emission barrier. The first light emission barrier and the second light emission barrier are configured to substantially prevent rotational blur of an image displayed by the display surface while the display and the blur screen are spun by the motor and the rotor.