摘要:
The invention relates to the manufacture of a so-called differential bipolar transistor comprising a base (1A), an emitter (2) and a collector (3), the base (1A) being formed by applying a doped semiconducting layer (1) which locally borders on a monocrystalline part (3) of the semiconductor body (10) where it forms the (monocrystalline) base (1A), and which semiconducting layer (1) borders, outside said monocrystalline part, on a non-monocrystalline part (4, 8) of the semiconductor body (10) where it forms a (non-monocrystalline) connecting region (1B) of the base (1A). The non-monocrystalline part (4, 8) of the semiconductor body (10) is obtained by covering the semiconductor body (10) with a mask (20) and replacing on either side thereof a part (8) of the semiconductor body (10) by an electrically insulating region (8) and by providing this, prior to the application of the semiconducting layer (1) with a polycrystalline semiconducting layer (4). The known method, in which an aperture is etched above the collector (3) after deposition of the polycrystalline layer (4), is relatively laborious. In a method in accordance with the invention, the polycrystalline layer (4) is selectively provided on the electrically insulating region (8), in which process use is made of the mask (20) to form the electrically insulating region (8). This method is less laborious than the known method. In addition, the resultant transistors have excellent properties and their dimensions may be very small. Preferably, both in the manufacture of the insulating region (8), preferably an oxide-filled groove (8), and in the process of selectively applying the polycrystalline layer (4) to the insulating region, use is made of a deposition step followed by a chemico-mechanical polishing step.
摘要:
The invention relates to a method of manufacturing a discrete or integrated bipolar transistor comprising a base (1A), an emitter (2) and a collector (3). The base (1A) and a connecting region (1B) of the base (1A) are formed by providing a semiconductor body (10) with a doped semiconducting layer (1) which locally borders on a monocrystalline part (3) of the semiconductor body which forms the collector (3). Outside said base, the layer (1) borders on a non-monocrystalline part (4) of the semiconductor body (10) and forms a non-monocrystalline connecting region (1B) of the base (1A). By means of a mask (5), the doping concentration of the layer (1) outside the mask (5) is selectively increased, resulting in a highly conducting connection region (1B) and a very fast transistor. In the known method, an ion implantation is used for this purpose. In a method in accordance with the invention, this is achieved by bringing the semiconductor body (10) into contact with a gaseous substance (40) comprising a doping element, and heating the semiconductor body (10) in such a manner that the doping elements penetrate into the semiconducting layer (1). Such a method surprisingly results in a much faster transistor. It has been found that this enables, on the one hand, a much smaller diffusion in the thickness direction of the doping of the base (1A) to be achieved, which results in a much faster transistor, particularly, if the base (1A) contains SiGe. On the other hand, the lateral diffusion from the connecting region (1B) to the base (1A) is particularly strongly suppressed. This too has a beneficial effect on the speed of the transistor. The supply of the gaseous substance (40), for example diborane, preferably takes place at a temperature between 800 and 950.degree. C. for one to several minutes. Subsequently, a slightly longer diffusion step can be carried out, for example, at 850.degree. C.