Abstract:
A semiconductor light-emitting device having a resonant cavity structure for emitting light perpendicularly to the plane of an active region, and a method of manufacturing the same. A post has a window of an upper electrode and a current aperture of an oxidized layer. Resonated light is emitted through the window and the current aperture. The post is formed by a sidewall of a pre-oxidized layer included in the post is exposed, and the pre-oxidized layer is horizontally oxidized by an oxidizing process by a predetermined distance from the sidewall thereof. An oxidized portion of the pre-oxidized layer becomes a high-resistance portion, and an un-oxidized portion of the pre-oxidized layer becomes the current aperture through which a current or light passes. Since the post is formed by way of self-alignment using the upper electrode and the current aperture is formed by oxidizing the exposed sidewall of the post, the central axis of the window of the upper electrode and the central axis of the current aperture are automatically aligned. Due to the alignment between the window and the current aperture, the electro-optical characteristics of a vertical cavity surface emitting laser (VCSEL) are improved.
Abstract:
A substrate for mounting an optical component such that a cylindrical lens can be passively aligned in an exact position, and a method of manufacturing the same are provided. The substrate includes a groove, which is recessed into the substrate to have a slanted sidewall; and a stopper, which is formed on the groove using a photolithographic process such that the stopper is in contact with the optical component mounted in the groove and defines a position of the optical component. The method includes forming a groove having a slanted sidewall by etching a substrate and forming a stopper, which is in contact with an optical component mounted in the groove and defines a position of the optical component, by performing a photolithographic process on the substrate having the groove.
Abstract:
A photodetector device includes a doped semiconductor substrate. A first intrinsic semiconductor material layer, a main reflector, a second intrinsic semiconductor material layer, an upper semiconductor material layer, which is doped the opposite as the substrate, are formed in succession on the semiconductor substrate. An upper electrode is formed on and electrically connected with the upper semiconductor layer, and a lower electrode is electrically connected to the semiconductor substrate. One of the intrinsic semiconductor layers is relatively thin to absorb incident light, while the other is relatively thick. The photodetector device, a p-i-n photodetector, has an I region including the intrinsic semiconductor layers with different thicknesses, and a main reflector therebetween. The thickness of the entire I region can be increased with a reduced transit distance for holes. Thus, low driving voltage and high sensitivity to a high frequency optical signal requirements can be realized without reducing the size of the photo-receiving area.