摘要:
In summary, the vertical rapid cooling furnace of this invention for treating semiconductor wafers with self contained gas chilling and recycling comprises a hot wall reaction tube positioned within a cylindrical array of heating coils. Space between the hot wall reaction tube and said array of heating coils provides a cooling gas passageway therebetween. The cooling gas passageway has an inlet and an outlet, a chilled gas inlet communicating with the inlet of the cooling gas passageway and a heated gas outlet communicating with the outlet of the cooling gas passageway. The furnace includes a heat exchanger having a hot gas inlet and a chilled gas outlet, the hot gas inlet thereof communicating with said heated gas outlet, and the chilled gas outlet communicating with said cooling gas passageway inlet. With this system, heated gas from the cooling gas passageway can be chilled to remove heat therefrom and returned to the cooling gas passageway to remove heat from the furnace. The furnace preferably includes a fan placed between the chilled gas outlet and the cooling gas passageway inlet and valves for isolating the heat exchanger from the furnace during its heating cycle.
摘要:
An infrared conveyor furnace with controllable point source radiation elements incorporating a clean room internal environment. The conveyor transports moieties in an indexed manner through multiple heating zones heated by arrays of lamps. The lamps of each array are divided into a plurality of groups which are separately controlled to maintain a constant temperature across the surface of the moiety. The control of the lamp groups is accomplished through the use of a controller utilizing data from FTIR sensors mounted in a fused quartz barrier which is permeable by infrared radiation but which seals the lamp arrays from the heating zones.
摘要:
A method of conveying moieties through an infrared conveyor furnace with controllable point source radiation elements incorporating a clean room internal environment. The method comprises the steps of transporting moieties in an indexed manner through multiple heating zones heated by arrays of lamps; and dividing the lamps of each array into a plurality of groups which are separately controlled to maintain a constant temperature across the surface of the moiety. The method further comprises controlling the lamp groups through the use of a controller utilizing data from FTIR sensors mounted in a fused quartz barrier which is permeable by infrared radiation but which seals the lamp arrays from the heating zones.
摘要:
A self-supporting umbrella canopy has a high strength-to-weight ratio and the ability to compactly fold flat. The umbrella canopy uses a series of collapsible, closed cross-section cells to provide its support and to provide weather protection for a person or persons below. The closed cross-section cells are attached to each other in series so that the umbrella canopy may conveniently unfurl in a radial manner. Construction of the umbrella canopy lends itself to automated processes. Due to the self-supporting nature of the collapsible, closed cross-section cells, lightweight and inexpensive waterproof materials may be used to construct the umbrella canopy.