摘要:
Embodiments are directed to catalyst systems comprising at least one metal ligand complex and to processes for polyolefin polymerization incorporating the catalyst systems. The metal ligand complexes have the following structures: (I)
摘要:
The ethylene-based polymers include a low molecular weight polymer fraction and a high molecular weight polymer fraction, which are divided by Smax on a molecular weight distribution (MWD) curve determined via absolute gel permeation chromatography. The low molecular weight polymer fraction and the high molecular weight polymer fraction include a Ladder character, L, defined for a given absolute molecular weight (MW) as the fit of the log of the intrinsic viscosity [h] versus the log of the absolute MW (M) curve using the expression, log[η]=log(β)+α log(M)−L*α log(2) according to a Mark-Houwink-Sakurada curve, in which log(β) is the intercept and ax is the slope. The low molecular weight polymer fraction has an MW below Smax and all values of L between −0.35 to 0.35; and the high molecular weight polymer fraction has an MW above Smax and a maximum value of L between 0.8 and 1.5.
摘要:
Processes for polymerizing polyolefins include contacting ethylene and optionally one or more (C3-C12)α-olefin in the presence of a catalyst system, wherein the catalyst system comprises a metal-ligand complex having a structure according to formula (I).
摘要:
Embodiments of this disclosure are directed to ethylene-based polymers. The ethylene-based polymer are polymerized units derived from ethylene, diene, and optionally, one or more C3-C12 α-olefins. The ethylene-based polymer includes a melt viscosity ratio (V0.1/V100) at 190 C greater than 20. The V0.1 is the viscosity of the ethylene-based polymer at 190 C at a frequency of 0.1 radians/second, and the V100 is the viscosity of the ethylene-based polymer at 190 C at a frequency of 100 radians/second. Additionally, the ethylene-based polymer includes an average g greater than 0.86, where the average g′ is an intrinsic viscosity ratio determined by gel permeation chromatography using a triple detector.
摘要:
Processes of synthesizing long-chain branched polymers. The processes include contacting together one or more C2-C14 alkene monomers, at least one diene, optionally a solvent, and a multi-chain catalyst optionally in the presence of hydrogen, wherein the multi-chain catalyst comprises a plurality of polymerization sites; producing at least two polymer chains of the C2-C14 alkene monomers, each polymer chain polymerizing at one of the polymerization sites; synthesizing the long-chain branched polymers by connecting the two polymer chains with the diene, the joining of the two polymer chains being performed in a concerted manner during the polymerization; and producing tri-functional long chain branches from the diene, wherein the tri-functional long chain branches occur at a frequency of at least 0.03 per 1000 carbon atoms. The diene has a structure according to formula (I):
摘要:
Processes of synthesizing long-chain branched polymers. The processes include contacting together one or more C2-C14 alkene monomers, at least one diene, optionally a solvent, and a multi-chain catalyst optionally in the presence of hydrogen, wherein the multi-chain catalyst comprises a plurality of polymerization sites; producing at least two polymer chains of the C2-C14 alkene monomers, each polymer chain polymerizing at one of the polymerization sites; synthesizing the long-chain branched polymers by connecting the two polymer chains with the diene, the joining of the two polymer chains being performed in a concerted manner during the polymerization; and producing tri-functional long chain branches and tetra-functional long chain branches from the diene, wherein the long-chain branched polymers have a ratio of tri-functional to tetra-functional long chain branches from 0.05:1 to 100:0; and adjusting the ratio of tri-functional and tetra-functional long chain branches. The diene has a structure according to formula (I):
摘要:
The present process embodiments for synthesizing long-chain branched copolymers include contacting together one or more C2-C14 alkene monomers, at least one diene or polyene, optionally a solvent, and a multi-chain catalyst. The multi-chain catalyst includes a plurality of polymerization sites and produces at least two polymer chains of the C2-C14 alkene monomers, each polymer chain polymerizing at one of the polymerization sites. The process synthesizes the long-chain branched polymers by connecting the two polymer chains with the diene or polyene, the joining of the two polymer chains being performed in a concerted manner during the polymerization.
摘要:
An olefin polymerization catalyst system comprising: a procatalyst component comprising a metal-ligand complex of Formula (I) wherein each X is independently a monodentate or polydentate ligand that is neutral, monoanionic, or dianionic, wherein n is an integer, and wherein X and n are chosen such that the metal-ligand complex of Formula (I) is overall neutral; wherein each R1 and R5 independently is selected from (C1-C40)hydrocarbyls, substituted (C1-C40)hydrocarbyls; (C1-C40)heterohydrocarbyls and substituted (C1-C40)heterohydrocarbyls; wherein each R2 and R4 independently is selected from (C1-C40)hydrocarbyls and substituted (C1-C40)hydrocarbyls; wherein R3 is selected from the group consisting of a (C3-C40)hydrocarbylene, substituted (C3-C40)hydrocarbylene, [(C+Si)3-(C+Si)40]organosilylene, substituted [(C+Si)3-(C+Si)40]organosilylene, [(C+Ge)3-(C+Ge)40]organogermylene, or substituted [(C+Ge)3-(C+Ge)40]organogermylene; wherein each N independently is nitrogen; and optionally, two or more R1-5 groups each independently can combine together to form mono-aza ring structures, with such ring structures having from 5 to 16 atoms in the ring excluding any hydrogen atoms.
摘要:
The present invention relates to compositions and processes of making ethylene/α-olefins. More particularly, the invention relates to processes of producing ethylene/α-olefin compositions having a controlled molecular weight distribution. The molecular weight distribution is controlled, for example, by controlling the relative monomer concentrations during contact with a pre-catalyst and/or using a catalyst comprising a catalytic amount of a molecule having the structure: wherein M=group 2-8 metal, preferably group 4 as a neutral or charged moiety; Y=any substituent including fused rings; L=any ligating group, especially a pyridyl or pyridylamide; X=alkyl, aryl, substituted alkyl, H or hydride, halide, or other anionic moiety; y=an integer from 0 to the complete valence of M; R=alkyl, aryl, haloalkyl, haloaryl, hydrogen, etc; x=1-6, especially 2; Dashed line=optional bond, especially a weak bond; and X and (CR2)x may be tethered or part of a ring.
摘要翻译:本发明涉及制备乙烯/α-烯烃的组合物和方法。 更具体地说,本发明涉及生产具有受控分子量分布的乙烯/α-烯烃组合物的方法。 分子量分布例如通过控制与预催化剂接触期间的相对单体浓度和/或使用包含催化量的具有以下结构的分子的催化剂进行控制:其中M = 2-8金属,优选 组4作为中性或带电部分; Y =任何取代基,包括稠环; L =任何连接基团,特别是吡啶基或吡啶基酰胺; X =烷基,芳基,取代的烷基,H或氢化物,卤化物或其它阴离子部分; y =从0到完全化合价的整数; R =烷基,芳基,卤代烷基,卤代芳基,氢等; x = 1-6,特别是2; 虚线=可选债券,特别是弱债券; X和(CR2)x可以是连接的或环的一部分。
摘要:
Embodiments of this disclosure are directed to ethylene-based polymers. The ethylene-based polymers are polymerized units derived from ethylene, diene, and optionally one or more C3-C12α-olefins. The ethylene-based polymer includes a melt strength greater than negative 17 times the log base 10 of the melt index plus 25 ((MS)>−17*log (MI)+25). In the equation, MS is the melt strength in cN and MI is the melt index in g/10 min according to ASTM D1238. The ethylene-based polymer also includes an average g′ that is greater than 0.70. The average g′ is an intrinsic viscosity ratio determined by gel permeation chromatography using a triple detector.