Abstract:
A rocker arm includes an outer arm having a first side and a second side, an inner arm positioned between the first side and the second side of the outer arm, a pivot axle pivotally coupling the inner arm and the outer arm at a first end of each of the inner arm and the outer arm, and a latch having a first position and a second position. The latch in the first position pivotally fixes the inner arm and the outer arm at a second end of each of the inner arm and the outer arm, and in the second position allows the inner arm and the outer arm to pivot independently. The latch is responsive to hydraulic pressure in a hydraulic fluid passage to selectively move to other of the first position and the second position. A lost motion spring is coupled to the inner arm.
Abstract:
A rocker arm for engaging a cam in a valve actuation arrangement includes a latch pin assembly having includes a latch pin, retainer, and biasing mechanism. The latch pin has a pin body with a head and a tail at the second end; the body defining an open volume; the tail having an open mouth in communication with the open volume of the body; and the open volume having a non-circular cross-section. The retainer has a male engagement portion and an outer portion. The male engagement portion is within the open volume of the body through the open mouth. The male engagement portion has a non-circular cross section. The outer portion is non-removably secured to an outer arm of the rocker arm. The biasing mechanism is oriented in the open volume of the body and between and against the latch pin and the retainer.
Abstract:
A rocker arm includes an outer arm having a first side and a second side, an inner arm positioned between the first side and the second side of the outer arm, a pivot axle pivotally coupling the inner arm and the outer arm at a first end of each of the inner arm and the outer arm, and a latch having a first position and a second position. The latch in the first position pivotally fixes the inner arm and the outer arm at a second end of each of the inner arm and the outer arm, and in the second position allows the inner arm and the outer arm to pivot independently. The latch is responsive to hydraulic pressure in a hydraulic fluid passage to selectively move to other of the first position and the second position. A lost motion spring is coupled to the inner arm.
Abstract:
A deactivating hydraulic lash adjustment (HLA) assembly includes an outer body configured to be received within a cartridge for a valve train carrier, a plunger disposed at least partially within the outer body, the plunger including a hollowed inner area, and an inner body disposed at least partially within the outer body and at least partially within the hollowed inner area. The inner body includes a low pressure chamber defined therein, and a high pressure chamber is defined between the plunger and the inner body within the hollowed inner area. The plunger is movable relative to the outer body and the inner body.
Abstract:
A valvetrain includes a rocker arm assembly having an electromagnetic latch housed in a chamber formed by a rocker arm. The chamber may be a retrofit hydraulic chamber. A flux shifting bi-stable latch provides a sufficiently compact design. Isolation of the magnetic elements within the rocker arm chamber may provide protection from metal particles carried by oil in an operating environment for the rocker arm assembly. Wiring connections to the rocker arms may be made through spring posts on the rocker arms. Connection to the rocker arms may be made with springs that can endure the rapid motion induced by the rocker arms. A wiring harness for the rocker arms may attach to hydraulic lash adjusters of the rocker arm assemblies. The rocker arm assemblies and their wiring may be formed into a unitary module that facilitates installation.
Abstract:
A system includes a rocker arm assembly for operative engagement with a first and second cam. The assembly includes a first arm for operatively engaging the first cam for a first desired lift profile, a second arm for operatively engaging the second cam for a second desired lift profile, where the second arm includes a latch to engage the second arm with the first arm. The latch is responsive to supplied oil pressure and release oil pressure to switch between lift profiles. The system includes the latch coupled to the supplied or released oil pressure to engage the arms before the first and second arms are engaged with the base circle portion of each of the respective first and second cams.
Abstract:
A valve train assembly having a valve train carrier including a body having a cartridge cavity formed in the body, a hydraulic lash adjuster adjustment (HLA) assembly, and a cartridge removably disposed in the cartridge cavity. The cartridge includes a main body defining an inner bore, wherein the HLA assembly is disposed in the inner bore, and the cartridge is sized and shaped for insertion into the cartridge cavity formed in an underside of the valve train carrier. The cartridge is configured to have a valve train lash set prior to insertion into the cartridge cavity. A rocker arm assembly includes a body configured to engage the hydraulic lash adjustment (HLA) assembly, an end having a socket formed therein, and an e-foot extending through the socket and coupled to the end, the e-foot configured to maintain substantially flat contact with a top surface of an engine valve.
Abstract:
A switching rocker arm system includes a rocker assembly having a first end and a second end, and engaging a lash adjuster an and engine valve. The system further includes a first arm rotationally coupled to a second arm at the first or second end, and selectively rotationally coupled to the second arm at the other of the first end and the second end by a latch. In the latched position, a second cam engagement surface of the second arm engages the second cam to operate the engine valve in a high-lift mode, a biasing spring urges the second cam engagement surface into contact with the second cam, and a rotational stop prevents contact of the second cam engagement surface with a base circle portion of the second cam in the low-lift mode.
Abstract:
A novel cylinder head arrangement for an in-line four cylinder or eight cylinder engine. A modified arrangement allows additional space for installation of wider rocker arm assemblies used for variable valve lift (VVL), cylinder deactivation (CDA) and other types of variable valve actuation (VVA). In one embodiment, cam towers adjacent the end two cylinders are not used. At least one end support is used, which may be an outboard bearing on a camshaft for each end. The wider rocker assemblies may then be installed. In another embodiment, cam towers adjacent the inner two cylinders are eliminated and a single camshaft support piece with a support bearing is installed between the inner cylinders to provide support for the camshafts. The wider rocker assemblies may then be installed on at least one of the middle cylinders. A novel oil control valve operates latches in switching rocker arm assemblies.
Abstract:
A method of precision manufacture of an outer arm of a rocker arm assembly is performed by determining structures of a rough outer arm that would require precision processing and locations to support the structures as they are processed. Starting with at least one structure requiring precision processing, locations on the outer arm close to the structure to hold the outer arm during processing are determined that would cause minimal distortion of the outer arm during processing. The outer arm is then provided with clamping lobes at these locations. The clamping lobes of the outer arm are clamping into a fixture for manufacturing. The slider pad may now be precision ground while the outer arm is clamped in the fixture with minimal risk of distortion of the outer arm.