Abstract:
Non-invasive “drawable”, or “paintable”, electrode for electrical stimulation or biological signal sensing comprising a pervious and electrically conductive layer (1), at least one electrically insulating element (2) for maintaining the electrically conductive layer (1) separated from the skin (11), and a conductive material (3) that is deposed using a delivery system (4) on desired areas (5) of the electrically conductive layer (1). The conductive material (3) can penetrate the electrically conductive layer (1) and any other part of the electrode underlying the desired areas (5), thus reaching the skin. The conductive material (3) creates an electrical connection between the desired areas (5) of the electrically conductive layer (1) and the skin. Therefore, the shape of the desired areas (5) electrically connected with the skin, can be customized by the user deposing (or “drawing”) the conductive material (3). Thus, the conductive material (3) enables the fabrication of electrodes with custom-shaped electrically conductive areas in desired positions.
Abstract:
Non-invasive “drawable”, or “paintable”, electrode for electrical stimulation or biological signal sensing comprising a pervious and electrically conductive layer (1), at least one electrically insulating element (2) for maintaining the electrically conductive layer (1) separated from the skin (11), and a conductive material (3) that is deposed using a delivery system (4) on desired areas (5) of the electrically conductive layer (1). The conductive material (3) can penetrate the electrically conductive layer (1) and any other part of the electrode underlying the desired areas (5), thus reaching the skin. The conductive material (3) creates an electrical connection between the desired areas (5) of the electrically conductive layer (1) and the skin. Therefore, the shape of the desired areas (5) electrically connected with the skin, can be customized by the user deposing (or “drawing”) the conductive material (3). Thus, the conductive material (3) enables the fabrication of electrodes with custom-shaped electrically conductive areas in desired positions.
Abstract:
Neuroprosthetic device for restoring daily-life action movements of upper limbs in patients suffering from motor impairments. The neuroprosthetic device comprises several non-invasive electrodes adapted to be fixed on a patient body, in a way as to stimulate at least two separate muscles which participate to the movement execution of the upper limb, an electrical stimulation device for injecting electrical current into said electrodes and a controller unit for regulating said currents through said electrodes. The neuroprosthetic device is characterized by the fact that the controller unit comprises transducing means which are adapted to convert an input current. The input current is regulated according to the intention to execute a movement, into a plurality of electrical currents defined in a way as to generate and modulate the movement execution, in order to generate complex goal-oriented movements for performing daily-living activities.