Abstract:
An apparatus for receiving a signal through an unlicensed band includes: a processor, a memory, and a radio frequency unit, wherein the processor executes a program stored in the memory to perform: receiving a secondary synchronization signal (SSS) in at least one remaining subframe except a subframe 0 or a subframe 5 of a plurality of subframes included in a discovery signal measurement timing configuration (DMTC), and detecting the SSS by using a subframe number of the subframe 0 or the subframe 5.
Abstract:
A method and an apparatus for allocating uplink resources includes transmitting an uplink grant (UL Grant) for an unlicensed component carrier (UCC) to a plurality of terminals, wherein the UL Grant for a first terminal among the plurality of terminals includes a resource allocation information in which a transmission timing of the uplink data of a second terminal among the plurality of terminals is considered.
Abstract:
Disclosed are a base station and a channel access method performing a channel access in a unlicensed band. The channel access method includes: performing channel sensing at least once on a channel of the unlicensed band in a channel sensing period of a frame; and broadcasting a reservation signal for the channel when the channel is empty.
Abstract:
An apparatus for receiving a signal through an unlicensed band includes: a processor, a memory, and a radio frequency unit, wherein the processor executes a program stored in the memory to perform: receiving a secondary synchronization signal (SSS) in at least one remaining subframe except a subframe 0 or a subframe 5 of a plurality of subframes included in a discovery signal measurement timing configuration (DMTC), and detecting the SSS by using a subframe number of the subframe 0 or the subframe 5.
Abstract:
A wireless communication system includes a first transmitter and a second transmitter. For a transmission or reception of data of a first user equipment and data of a second user equipment on resources shared by the first user equipment and the second user equipment, the first transmitter is configured for a superimposed non-orthogonal multiple access, NOMA, transmission or reception of a first data signal of the first user equipment and a second data signal of the second user equipment, and the second transmitter is configured for a superimposed non-orthogonal multiple access, NOMA, transmission or reception of a third data signal of the first user equipment and a fourth data signal of the second user equipment.
Abstract:
An apparatus for receiving a signal through an unlicensed band includes: a processor, a memory, and a radio frequency unit, wherein the processor executes a program stored in the memory to perform: receiving a secondary synchronization signal (SSS) in at least one remaining subframe except a subframe 0 or a subframe 5 of a plurality of subframes included in a discovery signal measurement timing configuration (DMTC), and detecting the SSS by using a subframe number of the subframe 0 or the subframe 5.
Abstract:
A method in which a transmitting terminal included in an talk-around direct communication (TDC) network transmits data includes: determining a data frame for transmitting the data; requesting to reserve a data transmission segment included in the data frame through a transmission request segment included in the data frame; receiving a response signal transmitted in a transmission response segment included in the data frame; and analyzing the response signal and transmitting the data through the data transmission segment.
Abstract:
Provided is a method for transmitting, by a transmitter, a first data having periodicity through a channel of an unlicensed band: The transmitter adjusts at least one of transmission timing of the first data and clear channel assessment (CCA) timing for the channel to occupy the channel. The transmitter determines whether the channel may be occupied by performing a CCA on the channel at the CCA timing. The transmitter transmits the first data through the channel at the transmission timing of the first data, when it is determined that the channel may be occupied.
Abstract:
A terminal receives allocation of a unique first identifier of the terminal from a base station. The terminal generates first uplink data. The terminal applies interleaving based on the first identifier to the first uplink data to generate second uplink data.
Abstract:
A method and an apparatus for allocating uplink resources includes transmitting an uplink grant (UL Grant) for an unlicensed component carrier (UCC) to a plurality of terminals, wherein the UL Grant for a first terminal among the plurality of terminals includes a resource allocation information in which a transmission timing of the uplink data of a second terminal among the plurality of terminals is considered.