Abstract:
A compressor may include first and second scroll members, first and second bearing housings, and a motor assembly. The first scroll member includes a first end plate and a first spiral wrap extending from the first end plate. The second scroll member includes a second end plate and a second spiral wrap extending from the second end plate and intermeshed with the first spiral wrap to define compression pockets therebetween. The first bearing housing supports the first scroll member for rotation about a first rotational axis. The second bearing housing may support the second scroll member for rotation about a second rotational axis that is parallel to and offset from the first rotational axis. The motor assembly may be disposed axially between the first and second bearing housings and may include a rotor attached to the first scroll member. The rotor may surround the first and second end plates.
Abstract:
A compressor may include a shell, first and second scroll members, a partition plate and a bypass valve member. The shell defines a discharge-pressure region and a suction-pressure region. The first scroll member is disposed within the shell and may include a first end plate having a discharge passage, and first and second bypass passages extending through the first end plate. The partition plate is disposed within the shell and separates the discharge-pressure region from the suction-pressure region and includes an opening in communication with the discharge-pressure region. The bypass valve member is movable between a first position restricting fluid flow through at least one of the first and second bypass passages and the opening and a second position in allowing fluid flow through the at least one of the first and second bypass passages and the opening.
Abstract:
A compressor may include a first compression member, a second compression member, and a motor assembly. The second compression member is movable relative to the first compression member and cooperates with the first compression member to define a compression pocket therebetween. The motor assembly drives one of the first and second compression members relative to the other one of the first and second compression members. The motor assembly includes a stator and a rotor. The rotor is rotatable relative to the stator about a rotational axis. The stator surrounds the rotational axis. The rotor may include magnets that are arranged around the rotational axis. The magnets may be spaced apart from the stator in an axial direction that is parallel to the first rotational axis.
Abstract:
A compressor may include a shell, first and second compression mechanisms, and first and second motor assemblies. The first compression mechanism may include first and second compression members that are rotatable relative to the shell about first and second rotational axes, respectively. The first motor assembly may be disposed within the shell and may include a first rotor attached to the first compression member and surrounding the first and second compression members. The second compression mechanism may include third and fourth compression members that are rotatable relative to the shell about third and fourth rotational axes, respectively. The second motor assembly may be disposed within the shell and may include a second rotor attached to the third compression member and surrounding the third and fourth compression members.
Abstract:
A compressor may include first and second scrolls, a hub plate and a valve. The first scroll may include an end plate defining first and second sides, a primary discharge passage extending therethrough, and a secondary discharge passage extending therethrough and located radially outward from the primary discharge passage. The hub plate may be mounted to the first scroll and may include first and second opposite sides and a hub discharge passage in fluid communication with the primary discharge passage. The first side of the hub plate may face the second side of the end plate and may include a valve guide extending axially toward the end plate adjacent the hub discharge passage. The valve member may be secured on the valve guide for axial movement between open and closed positions to respectively allow and restrict fluid communication between the secondary discharge passage and the hub discharge passage.
Abstract:
A compressor may include first and second scrolls, a hub plate and a valve. The first scroll may include an end plate defining first and second sides, a primary discharge passage extending therethrough, and a secondary discharge passage extending therethrough and located radially outward from the primary discharge passage. The hub plate may be mounted to the first scroll and may include first and second opposite sides and a hub discharge passage in fluid communication with the primary discharge passage. The first side of the hub plate may face the second side of the end plate and may include a valve guide extending axially toward the end plate adjacent the hub discharge passage. The valve member may be secured on the valve guide for axial movement between open and closed positions to respectively allow and restrict fluid communication between the secondary discharge passage and the hub discharge passage.
Abstract:
A compressor is provided and may include a shell assembly defining a suction pressure region and a discharge pressure region. A first scroll member may include a first discharge port and a first modulation port. A second scroll member may include a first variable volume ratio port. A capacity modulation valve assembly may be in fluid communication with the first modulation port and may be displaceable between open and closed positions to selectively provide communication between a first intermediate compression pocket and the suction pressure region via the first modulation port. A variable volume ratio valve assembly may be in fluid communication with the first variable volume ratio port. The variable volume ratio valve assembly may be displaceable between open and closed positions to selectively provide communication between a second intermediate compression pocket and the discharge pressure region via the first variable volume ratio port.
Abstract:
A compressor is provided and may include a first scroll member having an end plate and a spiral wrap extending from the end plate. The end plate may include a first modulation port and a second modulation port each in fluid communication with a compression pocket formed by the spiral wrap. A first modulation valve ring may be movable relative to the end plate between a first position blocking the first modulation port and a second position spaced apart from the first modulation port. A second modulation valve ring may movable relative to the end plate between a first position blocking the second modulation port and a second position spaced apart from the second modulation port. The second modulation ring may be located radially inward from the first modulation valve ring.
Abstract:
A condensing unit control module may be cooled using multiple methods of cooling. A first method of cooling can be used to cool the control module when a minimal or reduced amount of cooling is needed, and a second method of cooling can be used when the control module requires a larger or maximum amount of cooling. The first method of cooling may include the use of air cooling. The second method of cooling can be through working fluid cooling. The second cooling method can supplement the first cooling method as the cooling needs of the control module increase. The second cooling method can be activated based upon a temperature of a heat sink, a temperature of one or more components of the control module, operating conditions of a heat pump system, ambient conditions, and/or a temperature of the working fluid flowing throughout the heat pump system.
Abstract:
A compressor may include first and second scrolls, a hub plate and a valve member. The first scroll includes an end plate having a primary discharge passage and a secondary discharge passage. The secondary discharge passage is disposed radially outward from the primary discharge passage. The hub plate is mounted to the first scroll and has a hub discharge passage extending therethrough. The hub discharge passage is in fluid communication with the primary discharge passage. The valve member is movable between open and closed positions. The valve member restricts fluid flow through the secondary discharge passage when in the closed position to restrict fluid communication between the secondary discharge passage and the hub discharge passage. The valve member allows fluid flow through from the secondary discharge passage when in the open position to allow fluid communication between the secondary discharge passage and the hub discharge passage.