Abstract:
A method for stabilizing the clock frequency of a microcontroller associated with a field device of automation technology. The field device as a function of application is exposed to different process conditions, wherein the clock frequency of the microcontroller is ascertained at at least two different temperature values, and/or at at least two different voltage values. Based on the ascertained values, the dependence of the clock frequency of the microcontroller on temperature over a predetermined temperature- and/or frequency range and/or the dependence of the clock frequency of the microcontroller on voltage over a predetermined voltage- and/or frequency range is ascertained. The ascertained values are stored, and the influence of temperature and/or voltage on the clock frequency of the microcontroller is at least approximately compensated taking into considerating the ascertained temperature dependence and/or the ascertained voltage dependence.
Abstract:
An apparatus for synchronizing the clock frequencies of a first electronics unit arranged on the primary side, and a second electronics unit arranged on the secondary side. Associated with the first electronics unit is a clock signal producer, which produces a clock signal having a reference clock frequency, wherein a transmission unit is provided between the first electronics unit and the second electronics unit. A first control unit is provided, which operates the transmission unit with a clock frequency, which amounts to a fraction of the reference clock frequency of the first electronics unit, wherein a second control unit is provided, which couples the clock frequency out to the secondary side and, based on the out-coupled clock frequency, produces for the second electronics unit a clock frequency, which is synchronous with the reference clock frequency of the first electronics unit.
Abstract:
A method for stabilizing the clock frequency of a microcontroller associated with a field device of automation technology. The field device as a function of application is exposed to different process conditions, wherein the clock frequency of the microcontroller is ascertained at least two different temperature values, and/or at least two different voltage values. Based on the ascertained values, the dependence of the clock frequency of the microcontroller on temperature over a predetermined temperature- and/or frequency range and/or the dependence of the clock frequency of the microcontroller on voltage over a predetermined voltage- and/or frequency range is ascertained. The ascertained values are stored, and the influence of temperature and/or voltage on the clock frequency of the microcontroller is at least approximately compensated taking into considering the ascertained temperature dependence and/or the ascertained voltage dependence.